首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Time resolved study of laser triggered electric discharge spark in atmosphere: Machine learning approach
Institution:Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080, Zemun, Serbia
Abstract:In this paper we analyze the possibilities of using machine learning algorithms for analysis of optical spectra of electric discharge spark in atmosphere. Breakdown in air can be initiated by intense laser pulse, making plasma which has a significant electrical conductivity. The formed plasma can be further maintained by electric current obtained from capacitor discharge. In such a case the capacitor voltage can be much lower than the striking voltage (the voltage needed to initiate the electric breakdown in air). Present setup has timing precision and low jitter of fast laser and arbitrary high energies corresponding to capacitance and voltage to which the capacitor is charged. We have used a streak camera equipped with a spectrograph to analyze optical emission of plasma obtained in this way. Q-switched Nd:Yag laser was used to achieve the initial breakdown in air. Machine learning methods were used in order to classify optical spectra of plasmas with different electron temperatures obtained with different excitation energies. We have shown that, instead of using the usual way of identifying the spectral peaks and calculating their intensity ratio, it is possible to train the computer software to recognize the spectra corresponding to different electron temperatures. Principal component analysis was used to reduce the dimensionality of problem. We present possibilities of plasma electron temperature estimation based on several clustering algorithms.
Keywords:Machine learning  Laser induced breakdown spectroscopy  Electric discharge
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号