首页 | 本学科首页   官方微博 | 高级检索  
     检索      

升力体式浮升混合飞艇多学科设计优化
引用本文:孟军辉,李沫宁,马诺,刘莉.升力体式浮升混合飞艇多学科设计优化[J].北京航空航天大学学报,2021,47(1):72-83.
作者姓名:孟军辉  李沫宁  马诺  刘莉
作者单位:1.北京理工大学 宇航学院, 北京 100081
基金项目:航天器设计优化与动态模拟技术教育部重点实验室(北京航空航天大学)开放基金;国家自然科学基金
摘    要:升力体式混合飞艇是全球远距离大载重运输的重要选择,随着全球贸易的发展,逐渐成为国内外的研究热点。作为航空宇航技术、新能源技术和高性能材料技术相结合的新概念飞行器,混合飞艇设计过程需对多个学科进行综合考虑和优化。为了将多学科设计优化(MDO)方法引入到混合飞艇的总体设计中,将其分解为能源子系统、气动和推进子系统以及结构和重量子系统。在子系统模型构建的基础上,提出具有自适应能力的基于响应面的并行子空间优化(CSSO-RS)算法,将重量平衡和能量平衡作为实现远距离载重运输的约束条件,并提出爬升、日间巡航、滑翔和夜间巡航的多阶段任务剖面,以充分利用太阳能电池、燃料电池和锂电池的优势,实现混合飞艇的最优化设计。优化结果表明:具有自适应能力的优化算法在精确度和计算效率上均有明显的优势,同时重量分配的结果也为混合飞艇结构轻量化设计和能源系统设计提出了更高的要求。 

关 键 词:混合飞艇    混合能源    多学科设计优化(MDO)    基于响应面的并行子空间优化(CSSO-RS)    近似模型
收稿时间:2020-01-09

Multidisciplinary design optimization of a lift-type hybrid airship
MENG Junhui,LI Moning,MA Nuo,LIU Li.Multidisciplinary design optimization of a lift-type hybrid airship[J].Journal of Beijing University of Aeronautics and Astronautics,2021,47(1):72-83.
Authors:MENG Junhui  LI Moning  MA Nuo  LIU Li
Institution:1.School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China2.Key Laboratory of Dynamics and Control of Flight Vehicle, Ministry of Education, Beijing 100081, China
Abstract:Lift-type hybrid airship is an important choice of long-distance and large-load transportation. With the development of global trade, it has gradually become a research hotspot at home and abroad. As a new concept aircraft combining aeronautical science and technology, new energy technology and high-performance material technology, multiple disciplines should be considered and optimized in the design process of hybrid airship comprehensively. To introduce the Multidisciplinary Design Optimization (MDO) method into the conceptual design of hybrid airship, it is decomposed into energy subsystem, aerodynamic and propulsion subsystem, and structure and weight subsystem. On the basis of building subsystem model, a Concurrent Subsystem Optimization algorithm based on Response Surface (CSSO-RS) with the self-adaptive ability is put forward. The weight balance and energy balance are set as the constraints to achieve long-distance transportation. Meanwhile, a multi-stage task profile with climb, day cruise, gliding and night cruise is proposed to make full use of solar energy battery, fuel cell and lithium batteries and realize the optimal design of hybrid airship. The optimization results show that the adaptive optimization algorithm has obvious advantages in accuracy and computational efficiency, and the weight distribution results also put forward higher requirements for lightweight design and energy system design of hybrid airships. 
Keywords:
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《北京航空航天大学学报》浏览原始摘要信息
点击此处可从《北京航空航天大学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号