首页 | 本学科首页   官方微博 | 高级检索  
     

基于小波神经网络的航空刀具磨损状态识别
作者姓名:聂鹏  谌鑫  徐涛  孙宝林
作者单位:沈阳航空航天大学 机电工程学院, 沈阳 110136
基金项目:沈阳市人才引进专项基金资助项目(07SYRC04); 辽宁省教育厅重点实验室项目(LS2010117)
摘    要:针对航空零件的加工特点,采集刀具在不同磨损状态下的声发射(AE,Acoustic Emission)信号,对AE信号进行时频分析和小波变换,运用快速傅里叶变换(FFT, Fast Fourier Transform)以及db8小波5层分解,提取AE信号幅值的均方根和主能量频段的能量作为特征向量,对特征向量进行归一化处理后作为输入向量对小波神经网络进行训练.小波神经网络运用参数调整算法,在权值和阈值的修正中加入动量项.测试结果表明:AE信号对刀具磨损敏感的频率范围在10~150kHz,网络实际输出与期望结果的误差小于0.03,该方法能够对刀具不同磨损状态进行正确的识别. 

关 键 词:航空加工   刀具磨损   小波神经网络   状态识别
收稿时间:2009-11-12
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《北京航空航天大学学报》浏览原始摘要信息
点击此处可从《北京航空航天大学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号