首页 | 本学科首页   官方微博 | 高级检索  
     检索      

舰船燃气轮机高压涡轮颗粒沉积特性研究
引用本文:游学磊,姜玉廷,岳国强,季杰,张立楠.舰船燃气轮机高压涡轮颗粒沉积特性研究[J].推进技术,2020,41(11):2490-2498.
作者姓名:游学磊  姜玉廷  岳国强  季杰  张立楠
作者单位:哈尔滨工程大学,哈尔滨工程大学,哈尔滨工程大学,哈尔滨工程大学,哈尔滨工程大学
基金项目:国家自然科学基金(51809065)
摘    要:为了探究典型舰船燃气轮机高压涡轮叶栅通道内部的颗粒沉积分布规律,论文以分析随燃气进入涡轮叶栅通道内的颗粒的动力学及颗粒与壁面相互作用的特性为出发点,探究颗粒与涡轮叶片表面撞击后发生黏附与剥离以及沉积与反弹的相互作用准则,在此基础上构建相应的颗粒壁面沉积模型,采用数值模拟方法,建立气-固两相流无量纲方程组,嵌入UDF用户自定义函数,并比较分析临界速度模型和临界黏度模型对于模拟颗粒沉积分布的异同。结果表明,在本文工况条件下,对于临界速度模型而言,叶片表面和下端壁处的颗粒沉积效率都在动量Stokes数增大到约0.1时开始从100%减小,在动量Stokes数增加到约10后减小到0;上端壁处的颗粒沉积效率在动量Stokes数增加到约1时开始从100%减小,在动量Stokes数增大到约100后减小到0。而对于临界黏度模型而言,叶片表面和下端壁处的颗粒沉积效率随着动量Stokes数的增大而不断增大,二者都在动量Stokes数约为1时达到100%,而上端壁处的沉积效率却先增大后减小,最后再增大,在动量Stokes数约为0.1颗粒沉积效率降低到最小值约为80%,后开始增加到100%。

关 键 词:舰船燃气轮机  涡轮叶片  颗粒沉积  沉积模型  气-固两相流
收稿时间:2020/4/12 0:00:00
修稿时间:2020/5/26 0:00:00

Investigation on Particle Deposition Characteristic of High-Pressure Turbine for Marine Gas Turbine
YOU Xue-lei,JIANG Yu-ting,YUE Guo-qiang,JI Jie,ZHANG Li-nan.Investigation on Particle Deposition Characteristic of High-Pressure Turbine for Marine Gas Turbine[J].Journal of Propulsion Technology,2020,41(11):2490-2498.
Authors:YOU Xue-lei  JIANG Yu-ting  YUE Guo-qiang  JI Jie  ZHANG Li-nan
Institution:Harbin Engineering University,College of Energy and Power,Harbin Engineering University,Heilongjiang Harbin 15001,,,
Abstract:In order to investigate the particle deposition distribution in the high-pressure turbine cascade channel of a typical marine gas turbine. Based on the analysis of the particle dynamic and the characteristic of the interaction between the particle and the wall in the channel of the turbine cascade to explore the interaction rules of adhesion and peeling, deposition and rebound between particles and turbine vane surface after impacting. On this basis, the corresponding particle wall deposition model was constructed, and the dimensionless equations of gas-solid two phase flow were established by numerical simulation with the UDF(user-defined function), the difference between the critical velocity model and the critical viscosity model was analyzed. The results show that, under the calculation condition of this paper. For the critical velocity model, the particle deposition efficiency of the vane surface and the low endwall decrease from 100% when the momentum Stokes number increases to almost 0.1, and decrease to 0 after the momentum Stokes number increases to almost 10; the particle deposition efficiency of the up endwall starts to decrease from 100% when the momentum Stokes number increases to almost 1 and decreases to 0 after the momentum Stokes number increases to almost 100. For the critical viscosity model, the particle deposition efficiency of the vane surface and the low endwall increase with the increase of the momentum Stokes number, both of which reach 100% when the momentum Stokes number increases to almost 1, while the particle deposition efficiency of the up endwall increases firstly, then it decreases and finally increases again, the particle deposition efficiency decreases to a minimum value of almost 80% when the momentum Stokes number increases to almost 0.1, and then starts to increase to 100%.
Keywords:Marine gas turbine  Turbine vane  Particle deposition  Depositional model  Gas-solid two phase flow
点击此处可从《推进技术》浏览原始摘要信息
点击此处可从《推进技术》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号