首页 | 本学科首页   官方微博 | 高级检索  
     检索      

基于ADRC迭代学习控制的四旋翼无人机姿态控制
引用本文:王术波,韩宇,陈建,张自超,刘旭赞.基于ADRC迭代学习控制的四旋翼无人机姿态控制[J].航空学报,2020,41(12):324112-324112.
作者姓名:王术波  韩宇  陈建  张自超  刘旭赞
作者单位:1. 中国农业大学 工学院, 北京 100083;2. 中国农业大学 水利与土木工程学院, 北京 100083;3. 武汉大学 测绘遥感信息工程国家重点实验室, 武汉 430079
基金项目:吉林省重点研发计划;国家重点实验室开放基金;国家重点研发计划;国家自然科学基金;测绘遥感信息工程国家重点实验室资助课题
摘    要:针对农用无人机超低空表型遥感和喷药精准悬停易受地效扰动问题,提出了一种自适应ADRC姿态控制器。首先设计了基于ADRC的姿态控制器,结合四旋翼无人机平台在0.9~1.1、1.1~1.3、1.4~1.6、2.0~2.4、2.5~2.9、3.3~3.6 m/s侧向水平风、0.9~1.1 m/s (11°)、1.1~1.3 m/s (13°)、1.4~1.6 m/s (18°)、1.8~2.0 m/s (18°)、2.1~2.5 m/s (18°)前俯向风和侧俯向风下进行干扰的预测和控制量的补偿实验。实验结果显示使用ADRC姿态控制器后无人机抗风性能有较大提升。然而在存在初始误差时,ADRC固定带宽无法满足要求,进一步设计了自适应ADRC姿态控制器(ILC-ADRC)。通过迭代学习控制在线优化自抗扰控制器带宽,实现了不同增益观测器的自适应整定。实验结合四旋翼无人机平台分别进行了机头实际方向与期望方向偏离55°、90°、180°,水平风速1.1~1.3、1.4~1.6、2.0~2.4、2.5~2.9 m/s下使用ADRC和ILC-ADRC的对比。实验结果显示采用ILC-ADRC姿态控制器,在150次控制周期内,偏航角误差均在-15°~15°之间,满足四旋翼无人机偏航角控制精度要求,同时调节时间分别缩短了40%,16.67%,12.5%,53.33%,10.34%,13.95%,27.27%,58.66%,11.86%。

关 键 词:四旋翼无人机  地效扰动  精准悬停  自适应ADRC  迭代学习控制  抗风实验  
收稿时间:2020-04-20
修稿时间:2020-05-07

Active disturbance rejection control (ADRC)of UAV attitude based on iterative learning control
WANG Shubo,HAN Yu,CHEN Jian,ZHANG Zichao,LIU Xuzan.Active disturbance rejection control (ADRC)of UAV attitude based on iterative learning control[J].Acta Aeronautica et Astronautica Sinica,2020,41(12):324112-324112.
Authors:WANG Shubo  HAN Yu  CHEN Jian  ZHANG Zichao  LIU Xuzan
Institution:1. College of Engineering, China Agricultural University, Beijing 100083, China;2. College of Water Resources&Civil Engineering, China Agricultural University, Beijing 100083, China;3. State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China
Abstract:An adaptive Active Disturbance Rejection Control (ADRC) attitude controller is proposed to solve the problem that the ultralow altitude phenotype remote sensing and precise hovering during spraying of agricultural UAVs are easily disturbed by ground effects. First, an attitude controller based on ADRC is designed, and an interference prediction and control amount compensation experiment is performed under lateral horizontal wind of 0.9-1.1, 1.1-1.3, 1.4-1.6, 2.0-2.4, 2.5-2.9, 3.3-3.6 m/s, and forward pitch and side pitch wind of 0.9-1.1m/s (11 °), 1.1-1.3 m/s (13 °), 1.4-1.6 m/s (18 °), 1.8-2.0 m/s (18 °), 2.1-2.5 m/s (18 °). The experimental results show that the wind resistance of the UAV has been significantly improved by the ADRC attitude controller. However, the ADRC fixed bandwidth cannot meet the requirements when an initial error exists. Therefore, an adaptive ADRC attitude controller (ILC-ADRC) is further designed to optimize the bandwidth of the ADRC controller online to achieve adaptive tuning of different gain observers. Experiments are conducted to deviate the actual direction of the head from the desired direction by 55 °, 90 °, 180 °, with the horizontal wind speeds of 1.1-1.3, 1.4-1.6, 2.0-2.4, 2.5-2.9 m/s. The results show that with the ILC-ADRC attitude controller, the yaw angle error is within -15 ° -15 ° within 150 control cycles, satisfying the control accuracy of the yaw angle of the four-rotor UAV, and the stability time is shortened by 40%, 16.67%, 12.5%, 53.33%, 10.34%, 13.95%, 27.27%, 58.66%, 11.86%, respectively.
Keywords:quadrotor UAVs  ground effect disturbances  precise hovering  adaptive ADRC  iterative learning control  wind resistance experiments  
本文献已被 万方数据 等数据库收录!
点击此处可从《航空学报》浏览原始摘要信息
点击此处可从《航空学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号