首页 | 本学科首页   官方微博 | 高级检索  
     检索      

飞行状态对太阳能飞机中组件性能的影响
引用本文:金鑫,肖文波,叶国敏,夏情感,吴华明,章文龙,涂继亮,何银水.飞行状态对太阳能飞机中组件性能的影响[J].航空学报,2020,41(10):223851-223851.
作者姓名:金鑫  肖文波  叶国敏  夏情感  吴华明  章文龙  涂继亮  何银水
作者单位:1. 南昌航空大学 无损检测技术教育部重点实验室, 南昌 330063;2. 南昌航空大学 江西省光电检测技术工程实验室, 南昌 330063;3. 南昌航空大学 江西省图像处理与模式识别重点实验室, 南昌 330063;4. 南昌大学 机电工程学院, 南昌 330031
基金项目:南昌航空大学无损检测技术教育部重点实验室开放基金;江西省图像处理与模式识别重点实验室开放基金;航空科学基金;江西省研究生创新专项
摘    要:基于光伏组件产生功率模型,研究了太阳能飞机中飞行速度、高度、时间及区域等状态参数影响组件性能的规律。以单晶硅组件及Xihe太阳能飞机为研究对象,当飞机飞行速度增加时,组件产生的功率随之增加但趋于饱和。原因在于速度的增加能有效降低组件的表面温度,但提升是有限的。飞机所需的功率随飞行速度呈现指数增加,且组件产生的功率与飞机所需的功率有能量平衡点。组件产生的功率随飞行高度的增加而增加,但有饱和的趋势。原因在于,当飞行高度上升,大气温度随之下降,组件表面温度下降;同时海拔越高,大气密度和大气通透率越大,太阳辐射增加,从而组件产生的功率增加了;饱和的原因在于组件本身性能的限制。一天之中,组件产生的功率基本以太阳时12点为中心左右近似对称,中午最强;一年中组件性能在夏季最强,冬季最弱。原因在于组件性能主要由所受太阳辐射决定。随着纬度的增加,组件产生的功率减小。原因在于,纬度越高,太阳高度角越小,组件所能接受到的太阳辐射也就越小;纬度越低,组件总产生功率越高且平稳。纬度低的地区更适合太阳能飞机的飞行。该文为太阳能飞机的能量分配、长时间驻空提供一定的帮助。

关 键 词:太阳能飞机  光伏组件  飞行参数  电池性能  性能预测  
收稿时间:2020-01-02
修稿时间:2020-05-06

Effect of flight state parameters of solar aircraft on photovoltaic module performance
JIN Xin,XIAO Wenbo,YE Guomin,XIA Qinggan,WU Huaming,ZHANG Wenlong,TU Jiliang,HE Yinshui.Effect of flight state parameters of solar aircraft on photovoltaic module performance[J].Acta Aeronautica et Astronautica Sinica,2020,41(10):223851-223851.
Authors:JIN Xin  XIAO Wenbo  YE Guomin  XIA Qinggan  WU Huaming  ZHANG Wenlong  TU Jiliang  HE Yinshui
Institution:1. Key Laboratory of Nondestructive Testing, Ministry of Education, Nanchang Hangkong University, Nanchang 330063, China;2. Key Laboratory of Image Processing & Pattern Recognition in Jiangxi Province, Nanchang Hangkong University, Nanchang 330063, China;3. Jiangxi Engineering Laboratory for Optoelectronics Testing Technology, Nanchang Hangkong University, Nanchang 330063, China;4. College of Mechanical and Electrical Engineering, Nanchang University, Nanchang 330031, China
Abstract:The effects of flight state parameters such as speed, altitude, time, and regions of solar aircraft on the performance of photovoltaic modules are studied based on the power generation model of photovoltaic modules. Taking the monocrystalline silicon module and the Xihe solar aircraft as research objects, this paper concludes that with the increase of flight speed, the power generated by the module increases but tends to saturate, because the speed increase will effectively reduce the surface temperature of the modules. However, the performance improvement is limited, since the power required by the aircraft increases exponentially with the speed increase, and there is an energy balance between the power generated by the modules and that required by the aircraft. The power generated by the modules also increases with the tendency to saturate when the flight altitude rises because of temperature drop in the air and on the surface of the module; meanwhile, the higher the altitude, the smaller the atmospheric density and atmospheric permeability, the larger the solar radiation intensity, and thus the more power generated by the module. The saturation is due to the performance limitations of the components. During a day, the power generated by the components is approximately symmetrical around the axis of 12 o'clock solar time, and is strongest at noon. The battery performance is strongest in summer and weakest in winter, because the module performance is mainly determined by the intensity of solar radiation. As the latitude increases, the power produced by the components decreases, because the higher the latitude and thus the smaller the solar altitude angle, the less the solar radiation the photovoltaic module can receive. The lower the latitude, the higher and more stable the total power generated by the module is. This paper can provide reference for the energy distribution of solar aircraft and long-time space flight.
Keywords:solar aircraft  photovoltaic modules  flight parameters  photovoltaic cell performance  performance prediction  
本文献已被 万方数据 等数据库收录!
点击此处可从《航空学报》浏览原始摘要信息
点击此处可从《航空学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号