首页 | 本学科首页   官方微博 | 高级检索  
     检索      


High-adaption locomotion with stable robot body for planetary exploration robot carrying potential instruments on unstructured terrain
Institution:1. School of Automation, Beijing Institute of Technology, Beijing 100081, China;2. Key Laboratory of Intelligent Control and Decision of Complex System, Beijing Institute of Technology, Beijing 100081, China;3. Key Laboratory Ministry of Industry and Information Technology, Beijing Institute of Technology, Beijing 100081, China
Abstract:There is a strong demand for Planetary Exploration Mobile robots (PEMRs) that have the capability of the traversability, stability, efficiency and high load while tackling the specialized tasks on planet surface. In this paper, an electric parallel wheel-legged hexapod robot which has high-adaption locomotion on the unstructured terrain is presented. Also, the hybrid control framework, which enables robot to stably carry the heavy loads as well as to traverse the uneven terrain by utilizing both legged and wheeled locomotion, is also proposed. Based on this framework, robot controls the multiple DOF leg for performing high-adaption locomotion to negotiate obstacles via Gait Generator (GG). Additionally, by using Whole-Body Control (WBC) of framework, robot has the capability of flexibly accommodating the uneven terrain by Attitude Control (AC) kinematically adjusting the length of legs like an active suspension system, and by Force/torque Balance Control (FBC) equally distributing the Ground Reaction Force (GRF) to maintain a stable body. The simulation and experiment are employed to validate the proposed framework with the physical system in the planetary analog environments. Particularly, to smoothly demonstrate the performance of robot transporting heavy loads, the experiment of carrying 3-person load of about 240 kg is deployed.
Keywords:Attitude control  Gait generation  High-adaption locomotion  Obstacle avoidance  Planetary exploration robot
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号