首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Adaptive fuzzy terminal sliding mode control for the free-floating space manipulator with free-swinging joint failure
Institution:School of Automation,Beijing University of Posts and Telecommunications,Beijing 100876,China
Abstract:Space manipulator with free-swinging joint failure simultaneously contains kinematic and dynamic coupling relationships, so it belongs to a new underactuated system. To allow the manipulator to carry on tasks, an effective robust underactuated control method for the space manipulator with free-swinging joint failure is studied in this paper. Considering the effect of model uncertainty and joint torque disturbance, a robust underactuated control system based on the Terminal Sliding Mode Controller (TSMC) is designed, but two drawbacks are discussed: (A) Robustness depraves with eliminating chattering. (B) Control parameters are difficult to be determined under unknown uncertainty and disturbance. To improve the TSMC, the adaptive fuzzy controller is introduced to estimate the real effect of unknown uncertainty and disturbance according to deviations of sliding mode and its reaching law. The estimated result is directly compensated into active joints torque. In simulation, the space manipulator with free-swinging joint executes tasks based on the TSMC and the Adaptive Fuzzy Terminal Sliding Mode Controller (AFTSMC) respectively. Same tasks can be finished with smaller joints torque and stronger robustness based on the AFTSMC. Therefore, AFTSMC can serve as an effective robust control method for the space manipulator with free-swinging joint failure under unknown model uncertainty and torque disturbance.
Keywords:Space manipulator  Free-swinging joint failure  Sliding mode control  Adaptive fuzzy control  Robust controllers
本文献已被 万方数据 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号