首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Multiscale topology optimization using feature-driven method
Institution:State IJR Center of Aerospace Design and Additive Manufacturing, Northwestern Polytechnical University, Xi’an 710072, China
Abstract:This paper presents a multiscale design method for simultaneous topology optimization of both macrostructures and microstructures. Geometric features are extended as design primitives at both macro and micro scales and represented by Level Set Functions (LSFs). Parameters related to the locations, sizes, and orientations of macro and micro features are considered as design variables and optimized simultaneously. In the overlapping areas of different macro features, embedded microstructures are optimally figured out as the solution of the corresponding sub-optimization problem. In this study, the eXtended Finite Element Method (XFEM) is implemented for structural and sensitivity analyses with respect to design variables. This method has the advantage of using a fixed grid independent of the topology optimization process. The homogenization procedure is applied to calculate the effective properties of considered microstructures in each macro feature. Numerical examples are presented to illustrate the effectiveness of the proposed method. Results depict that the multiscale design cannot obviously improve structural stiffness compared with a solid-material design under the linear elastic condition.
Keywords:Feature-driven method  Level set function  Multiscale design  Topology optimization  XFEM
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号