首页 | 本学科首页   官方微博 | 高级检索  
     检索      

基于k-ωSST模型的同心筒发射装置流场数值模拟
引用本文:张程,夏智勋,马超,金玲,张木.基于k-ωSST模型的同心筒发射装置流场数值模拟[J].航空动力学报,2019,34(11):2331-2338.
作者姓名:张程  夏智勋  马超  金玲  张木
作者单位:国防科技大学空天科学学院,长沙410073;中国航天科技集团有限公司中国运载火箭技术研究院,北京100076;国防科技大学空天科学学院,长沙,410073;南京航空航天大学航空学院,南京,210016;中国航天科技集团有限公司中国运载火箭技术研究院,北京,100076
摘    要:围绕同心筒发射装置流场数值模拟及结构优化展开研究,流场数值模拟基于轴对称Navier-Stokes(N-S)方程、k-ω shear stress transfer(SST)湍流模型,并运用域动分层动网格方法,以同心筒初始方案为参照,研究了同心筒发射过程的动态流场,在此基础上,分别对内筒收敛段的收敛角度以及筒口扩张段的扩张角度进行了优化研究,研究结果表明:内筒收敛段使得燃气排导更为通畅,筒内的热环境有所改善,并且内筒收敛段起到了一定的防喷作用,收敛角越大,筒底热环境越好;筒口扩张段对发射过程动态流场也有明显影响,收敛角为15°,扩张角为20°时,导弹从开始发射到完全出筒过程中热环境最为良好。 

关 键 词:同心筒发射装置  内筒收敛角  筒口扩张角  k-ω  SST湍流模型  动网格方法  发射装置结构优化
收稿时间:2019/3/31 0:00:00

Numerical simulation of flow field of concentric canister launcher based on k-ω SST turbulence model
ZHANG Cheng,XIA Zhixun and MA Chao.Numerical simulation of flow field of concentric canister launcher based on k-ω SST turbulence model[J].Journal of Aerospace Power,2019,34(11):2331-2338.
Authors:ZHANG Cheng  XIA Zhixun and MA Chao
Institution:1.School of Space Science and Engineering,National University of Defense Technology,Changsha 410073,China2.China Academy of Launch Vehicle Technology,China Aerospace Science and Technology Corporation,Beijing 100076,China3.College of Aerospace Engineering,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China
Abstract:The flow field of the concentric canister launcher and structural optimization was simulated numerically based on the axisymmetric Navier-Stokes(N-S)equation, the k-ω shear stress transfer (SST) turbulence model and the dynamic mesh update method named zone moving and dynamic laying. With reference to the initial scheme of the concentric canister launcher, the dynamic flow field of the launching process was studied. On this basis, the parameterization of the convergence angle of the convergent section of the inner cylinder and the expansion angle of the expansion section of the cylinder was studied. The results showed that the convergent section of the inner cylinder made the gas discharge guide smoother, the thermal environment inside the cylinder was improved, and the inner cylinder convergence section played a certain role of anti-spray. The larger convergence angle brought about the better thermal environment at the bottom of the cylinder. The expansion section of the nozzle had a significant change to the dynamic flow field during the launch process. When the convergence angle was 15 degrees and the expansion angle was 20 degrees, the thermal environment of the missile was the best from the start to the complete exit. 
Keywords:
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《航空动力学报》浏览原始摘要信息
点击此处可从《航空动力学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号