首页 | 本学科首页   官方微博 | 高级检索  
     检索      

喷注壁面楔状流层流边界层速度与温度相似解
引用本文:赵国昌,杜霞,宋丽萍,单龙,孔敬儒,彭大维.喷注壁面楔状流层流边界层速度与温度相似解[J].航空动力学报,2015,30(7):1537-1545.
作者姓名:赵国昌  杜霞  宋丽萍  单龙  孔敬儒  彭大维
作者单位:沈阳航空航天大学 航空航天工程学部 (院), 沈阳 110136;沈阳航空航天大学 航空航天工程学部 (院) 辽宁省航空推进系统先进测试技术重点实验室, 沈阳 110136,沈阳航空航天大学 航空航天工程学部 (院), 沈阳 110136,沈阳航空航天大学 科学技术协会, 沈阳 110136,沈阳航空航天大学 航空航天工程学部 (院), 沈阳 110136,沈阳航空航天大学 航空航天工程学部 (院), 沈阳 110136,沈阳航空航天大学 航空航天工程学部 (院), 沈阳 110136
基金项目:航空科学基金(20131954004); 辽宁省攀登学者基金(20132015)
摘    要:建立了壁面有喷注的楔状流层流边界层冷却数学模型,求解经相似变换得到的描述无量纲流函数和无量纲温度的常微分方程,获得了楔状流层流边界层无量纲速度和温度的相似解,给出了考虑壁面喷注边界条件的形式简洁、物理意义明确的无量纲流函数拟合式;用Runge-Kutta法求解无量纲速度与温度的常微分方程,获得了壁面有喷注的楔状流层流边界层无量纲速度和温度随楔形角、吹风参数、冷却介质温度的变化规律.通过计算0°,18°和36°楔形角的楔状流层流边界冷却速度与温度分布得到以下结论:楔状流速度边界层和温度边界层厚度都随楔形角的增大而变小,随着吹风参数的增大而增大;当冷却介质温度越低、吹风参数越小、楔形角越大时,靠近壁面处楔状流层流边界层内温度梯度越大.

关 键 词:楔状流  层流边界层  喷注壁面  相似解  吹风参数
收稿时间:2014/12/21 0:00:00

Velocity and temperature similarity solutions of wedge flow laminar boundary layer with wall injection
ZHAO Guo-chang,DU Xi,SONG Li-ping,SHAN Long,KONG Jing-ru and PENG Da-wei.Velocity and temperature similarity solutions of wedge flow laminar boundary layer with wall injection[J].Journal of Aerospace Power,2015,30(7):1537-1545.
Authors:ZHAO Guo-chang  DU Xi  SONG Li-ping  SHAN Long  KONG Jing-ru and PENG Da-wei
Institution:Faculty of Aerospace Engineering, Shenyang Aerospace University, Shenyang 110136, China;Liaoning Key Laboratory of Advanced Measurement and Test Technology for Aviation Propulsion System, Faculty of Aerospace Engineering, Shenyang Aerospace University, Shenyang 110136, China,Faculty of Aerospace Engineering, Shenyang Aerospace University, Shenyang 110136, China,Association of Science and Technology, Shenyang Aerospace University, Shenyang 110136, China,Faculty of Aerospace Engineering, Shenyang Aerospace University, Shenyang 110136, China,Faculty of Aerospace Engineering, Shenyang Aerospace University, Shenyang 110136, China and Faculty of Aerospace Engineering, Shenyang Aerospace University, Shenyang 110136, China
Abstract:The mathematical model of the wedge flow laminar boundary layer with wall injection boundary was established. Based on this model, the similarity solutions of dimensionless velocity and temperature distribution in the laminar boundary layer were obtained by solving the ordinary differential equations of the dimensionless stream function and dimensionless temperature. The ordinary differential equations were derived through similarity transformation from the partial differential equations describing the flow and heat transfer of wedge flow laminar boundary layer with wall injection. The curve fitting of dimensionless stream function derived takes into account the wall injection effect of cooling gas. The Runge-Kutta method was used to solve the ordinary differential equations of dimensionless stream function and dimensionless temperature in order to analyze the variations in the dimensionless velocity and temperature distributions in the wedge flow laminar boundary layer with wall injection with changes in wedge angle, blowing parameter, and cooling medium temperature. The results of the dimensionless velocity and temperature similarity solutions in the laminar boundary layer of wedge flows with wedge angles of 0°, 18° and 36° show that both the velocity boundary layer thickness and temperature boundary layer thickness of the laminar wedge flows with wall injection enlarge with the increase of blowing parameter and reduce with the increase of wedge angle; the boundary layer temperature gradient near the wall is larger with lower cooling media temperatures, smaller blowing parameters, and larger wedge angles.
Keywords:wedge flow  laminar boundary layer  wall injection  similarity solutions  blowing parameter
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《航空动力学报》浏览原始摘要信息
点击此处可从《航空动力学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号