首页 | 本学科首页   官方微博 | 高级检索  
     检索      

后视镜罩边缘结构对流场和气动噪声的影响
引用本文:陈鑫,王怀玉,高长凤,张武,谢晨.后视镜罩边缘结构对流场和气动噪声的影响[J].航空动力学报,2014,29(5):1099-1104.
作者姓名:陈鑫  王怀玉  高长凤  张武  谢晨
作者单位:吉林大学 汽车工程学院 汽车仿真与控制国家重点实验室, 长春 130025;吉林大学 汽车工程学院 汽车仿真与控制国家重点实验室, 长春 130025;吉林大学 汽车工程学院 汽车仿真与控制国家重点实验室, 长春 130025;吉林大学 汽车工程学院 汽车仿真与控制国家重点实验室, 长春 130025;吉林大学 汽车工程学院 汽车仿真与控制国家重点实验室, 长春 130025
基金项目:国家自然科学基金(51175214);国家“十二五”科技支撑计划(2011BAG03B02-1)
摘    要:采用大涡模拟(LES)的计算方法,对车外后视镜不同边缘结构引起的外部流场和镜后车身表面监测点处的气动噪声进行了数值仿真.研究表明:不同的镜罩边缘结构在较大程度上影响了流经后视镜罩的气流速度和流线方向,对后视镜后部流场和监测点处声压级产生较大影响.相较于原模型的光滑边缘结构,模型1后部流场涡团更远离车身表面,有利于降低气动噪声,某监测点1/3倍频程中心频率处声压级最大降幅接近10dB;模型2后部流场涡团产生分离,并更靠近车身表面,反而使气动噪声增大.模型1的镜罩边缘结构改进方案对车外后视镜-A柱区域的流场和气动噪声都有较好的改善.

关 键 词:后视镜  大涡模拟(LES)  气动噪声  流场  边缘结构
收稿时间:9/6/2013 12:00:00 AM

Effect of rearview mirror edge structure on flow field and aerodynamic noise
CHEN Xin,WANG Huai-yu,GAO Chang-feng,ZHANG Wu and XIE Chen.Effect of rearview mirror edge structure on flow field and aerodynamic noise[J].Journal of Aerospace Power,2014,29(5):1099-1104.
Authors:CHEN Xin  WANG Huai-yu  GAO Chang-feng  ZHANG Wu and XIE Chen
Institution:State Key Laboratory of Automotive Simulation and Control, College of Automotive Engineering, Jilin University, Changchun 130025, China;State Key Laboratory of Automotive Simulation and Control, College of Automotive Engineering, Jilin University, Changchun 130025, China;State Key Laboratory of Automotive Simulation and Control, College of Automotive Engineering, Jilin University, Changchun 130025, China;State Key Laboratory of Automotive Simulation and Control, College of Automotive Engineering, Jilin University, Changchun 130025, China;State Key Laboratory of Automotive Simulation and Control, College of Automotive Engineering, Jilin University, Changchun 130025, China
Abstract:Numerical simulation of exterior flow field and aerodynamic noise caused by different rearview mirror edge structures was conducted by the large eddy simulation(LES). The results show that various mirror cover edge structures have an effect on the airflow velocity and direction, affecting greatly the rear flow field of rearview mirror and sound pressure level at monitoring point. Compared with the original model, the vortex flow behind model 1 is farther away from the body surface, helping to reduce aerodynamic noise. Sound pressure level drops by almost 10dB in 1/3 octave center frequency at a monitoring point. The vortex flow behind model 2 is separated and located nearer to the body surface, leading to rise of aerodynamic noise. The mirror cover edge structure of model 1 improves the flow field and aerodynamic noise around the rearview mirror and A-pillar.
Keywords:rearview mirror  large eddy simulation(LES)  aerodynamic noise  flow field  edge structure
本文献已被 CNKI 等数据库收录!
点击此处可从《航空动力学报》浏览原始摘要信息
点击此处可从《航空动力学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号