首页 | 本学科首页   官方微博 | 高级检索  
     检索      

考虑空间机动飞行的直升机尾传动轴建模与临界转速分析
引用本文:倪德,朱如鹏,陆凤霞,鲍和云,靳广虎,李苗苗.考虑空间机动飞行的直升机尾传动轴建模与临界转速分析[J].航空动力学报,2015,30(6):1520-1528.
作者姓名:倪德  朱如鹏  陆凤霞  鲍和云  靳广虎  李苗苗
作者单位:南京航空航天大学 机电学院 江苏省精密与微细制造技术重点实验室, 南京 210016;中国航空工业集团公司 中国航空动力机械研究所, 湖南 株洲 412002,南京航空航天大学 机电学院 江苏省精密与微细制造技术重点实验室, 南京 210016,南京航空航天大学 机电学院 江苏省精密与微细制造技术重点实验室, 南京 210016,南京航空航天大学 机电学院 江苏省精密与微细制造技术重点实验室, 南京 210016,南京航空航天大学 机电学院 江苏省精密与微细制造技术重点实验室, 南京 210016,南京航空航天大学 机电学院 江苏省精密与微细制造技术重点实验室, 南京 210016
基金项目:国家自然科学基金(51375226); 高等学校博士学科点专项科研基金(20113218110017); 江苏省普通高校研究生科研创新计划(CXZZ11_0199); 中央高校基本科研业务费专项资金
摘    要:建立了具有普遍性的考虑直升机空间机动飞行的尾传动轴动力学模型.分析了机动飞行对尾传动轴临界转速的影响,发现只有俯仰角速度、偏航角速度、横滚角速度和角加速度4个转动运动分量会影响尾传动轴的临界转速.通过算例着重分析了俯仰、偏航和横滚角速度对尾传动轴前3阶临界转速的影响规律.结果表明:俯仰角速度使尾传动轴的临界转速降低,但只对反进动第1阶临界转速有较大影响;偏航角速度对尾传动轴临界转速的影响效果与俯仰角速度完全相同;正向横滚角速度使尾传动轴的正进动临界转速提高,而使反进动临界转速降低;但对于反向横滚,在以横滚角速度等于某值的分界线之前,横滚角速度对尾传动轴临界转速的影响规律与正向横滚相反,前3阶临界转速变化曲线的分界线对应的横滚角速度分别为1.86,27.41,124.5rad/s.

关 键 词:弯曲振动  临界转速  尾传动轴  直升机  机动飞行
收稿时间:2013/12/23 0:00:00

Modeling and analysis of critical speed for tail drive shaft of helicopter considering space maneuvering flight
NI De,ZHU Ru-peng,LU Feng-xi,BAO He-yun,JIN Guang-hu and LI Miao-miao.Modeling and analysis of critical speed for tail drive shaft of helicopter considering space maneuvering flight[J].Journal of Aerospace Power,2015,30(6):1520-1528.
Authors:NI De  ZHU Ru-peng  LU Feng-xi  BAO He-yun  JIN Guang-hu and LI Miao-miao
Institution:Jiangsu Key Laboratory of Precision and Micro-Manufacturing Technology, College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China;China Aviation Powerplant Research Institute, Aviation Industry Corporation of China, Zhuzhou Hunan 412002, China,Jiangsu Key Laboratory of Precision and Micro-Manufacturing Technology, College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China,Jiangsu Key Laboratory of Precision and Micro-Manufacturing Technology, College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China,Jiangsu Key Laboratory of Precision and Micro-Manufacturing Technology, College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China,Jiangsu Key Laboratory of Precision and Micro-Manufacturing Technology, College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China and Jiangsu Key Laboratory of Precision and Micro-Manufacturing Technology, College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
Abstract:The universal dynamical model of tail drive shaft of helicopter considering maneuvering flight was established. The reasons for maneuvering flight affecting the critical speed of tail drive shaft of helicopter were analyzed. It is pointed out that only a portion of the rotational motion components can affect the critical speed of tail drive shaft, including: pitching angular velocity, yawing angular velocity, rolling angular velocity and angular acceleration. The influence law of the pitching angular velocity, yawing angular velocity and rolling angular velocity on the first three order critical speeds of drive shaft was discussed through a numerical example. The results reveal that the pitching angular velocity reduces the critical speeds of tail drive shaft, but only has a greater impact on the first order critical speed of tail drive shaft in a backward whirl, and the yawing angular velocity has the same influence. The positive rolling angular velocity increases the critical speed of tail drive shaft in a forward whirl, and reduces the critical speed of tail drive shaft in a backward whirl; but in the case of negative roll maneuver, there is a reverse case compared with the positive roll maneuver that the backward rolling angular velocity reduces the critical speeds of tail drive shaft in a forward whirl and increases the critical speeds of shaft in a backward whirl, before the boundary of the rolling angular velocity equals to a special value. The rolling angular velocities corresponding to the boundary of variation curve of the first, second and third critical speeds are respectively 1.86, 27.41 and 124.5rad/s.
Keywords:bending vibration  critical speed  tail drive shaft  helicopter  maneuvering flight
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《航空动力学报》浏览原始摘要信息
点击此处可从《航空动力学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号