首页 | 本学科首页   官方微博 | 高级检索  
     检索      

镍基高温合金GH4169小裂纹早期扩展的原位疲劳试验
引用本文:张丽,黄新跃,吴学仁,于慧臣,张敏,李宏良.镍基高温合金GH4169小裂纹早期扩展的原位疲劳试验[J].航空动力学报,2014,29(4):901-906.
作者姓名:张丽  黄新跃  吴学仁  于慧臣  张敏  李宏良
作者单位:中国航空工业集团公司 北京航空材料研究院 航空材料检测与评价北京市重点实验室, 北京 100095;中国航空工业集团公司 北京航空材料研究院 先进高温结构材料国防科技重点实验室, 北京 100095;中国航空工业集团公司 北京航空材料研究院 航空材料检测与评价北京市重点实验室, 北京 100095;中国航空工业集团公司 北京航空材料研究院 先进高温结构材料国防科技重点实验室, 北京 100095;中国航空工业集团公司 北京航空材料研究院 航空材料检测与评价北京市重点实验室, 北京 100095;中国航空工业集团公司 北京航空材料研究院 先进高温结构材料国防科技重点实验室, 北京 100095;中国航空工业集团公司 北京航空材料研究院 航空材料检测与评价北京市重点实验室, 北京 100095;中国航空工业集团公司 北京航空材料研究院 先进高温结构材料国防科技重点实验室, 北京 100095;北京科技大学 新金属材料国家重点实验室, 北京 100083;北京科技大学 新金属材料国家重点实验室, 北京 100083
摘    要:通过原位扫描电子显微镜(SEM)疲劳试验,研究了直接时效GH4169高温合金在室温下的疲劳小裂纹萌生和早期扩展过程.结果表明:在应力比R=0.1的拉-拉疲劳载荷作用下,疲劳小裂纹的萌生寿命仅为全寿命的20%左右.疲劳小裂纹起源于表面夹杂,以半椭圆表面裂纹形状扩展,扩展后期穿透试样一侧形成角裂纹,角裂纹迅速扩展导致试样断裂.疲劳小裂纹的早期扩展易受局部微观结构的影响,扩展速率分散性较大.

关 键 词:镍基高温合金  GH4169  原位疲劳试验  疲劳小裂纹  裂纹扩展速率
收稿时间:2013/4/26 0:00:00

In-situ experiment on early growth of small fatigue crack of nickel-based superalloy GH4169
ZHANG Li,HUANG Xin-yue,WU Xue-ren,YU Hui-chen,ZHANG Min and LI Hong-liang.In-situ experiment on early growth of small fatigue crack of nickel-based superalloy GH4169[J].Journal of Aerospace Power,2014,29(4):901-906.
Authors:ZHANG Li  HUANG Xin-yue  WU Xue-ren  YU Hui-chen  ZHANG Min and LI Hong-liang
Institution:Beijing Key Laboratory of Aeronautical Materials Testing and Evaluation, Beijing Institute of Aeronautical Materials, Aviation Industry Corporation of China, Beijing 100095, China;National Key Laboratory of Science and Technology on Advanced High Temperature Structure Materials, Beijing Institute of Aeronautical Materials, Aviation Industry Corporation of China, Beijing 100095, China;Beijing Key Laboratory of Aeronautical Materials Testing and Evaluation, Beijing Institute of Aeronautical Materials, Aviation Industry Corporation of China, Beijing 100095, China;National Key Laboratory of Science and Technology on Advanced High Temperature Structure Materials, Beijing Institute of Aeronautical Materials, Aviation Industry Corporation of China, Beijing 100095, China;Beijing Key Laboratory of Aeronautical Materials Testing and Evaluation, Beijing Institute of Aeronautical Materials, Aviation Industry Corporation of China, Beijing 100095, China;National Key Laboratory of Science and Technology on Advanced High Temperature Structure Materials, Beijing Institute of Aeronautical Materials, Aviation Industry Corporation of China, Beijing 100095, China;Beijing Key Laboratory of Aeronautical Materials Testing and Evaluation, Beijing Institute of Aeronautical Materials, Aviation Industry Corporation of China, Beijing 100095, China;National Key Laboratory of Science and Technology on Advanced High Temperature Structure Materials, Beijing Institute of Aeronautical Materials, Aviation Industry Corporation of China, Beijing 100095, China;State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China;State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
Abstract:Small fatigue crack initiation and propagation behaviors at room temperature of a directly aged nickel-based superalloy GH4169 were studied by in-situ scanning electron microscope (SEM) fatigue test. The results showed that under tension-tension fatigue loading with R=0.1, small fatigue the crack initiation period was only about 20% of the total fatigue life. Small fatigue cracks initiated at surface inclusions and grew as semi-elliptical surface cracks. The surface crack broke through one side of the specimen and subsequently became a corner crack with fast growth rates, leading to the final fracture. The early growth of small fatigue cracks was strongly affected by the local microstructure of materials, and the scattering of small fatigue crack growth rate was large.
Keywords:nickel-based superalloy  GH4169  in-situ fatigue test  small fatigue crack  crack growth rate
本文献已被 CNKI 等数据库收录!
点击此处可从《航空动力学报》浏览原始摘要信息
点击此处可从《航空动力学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号