首页 | 本学科首页   官方微博 | 高级检索  
     检索      

收-扩喷管与飞行器后体的一体化气动优化设计
引用本文:任超奇,王强,胡海洋.收-扩喷管与飞行器后体的一体化气动优化设计[J].航空动力学报,2014,29(10):2294-2302.
作者姓名:任超奇  王强  胡海洋
作者单位:北京航空航天大学 能源与动力工程学院, 北京 100191;先进航空发动机协同创新中心, 北京 100191;北京航空航天大学 能源与动力工程学院, 北京 100191;先进航空发动机协同创新中心, 北京 100191;北京航空航天大学 能源与动力工程学院, 北京 100191
摘    要:以轴对称收-扩喷管与飞行器后体的气动特性为研究对象,基于部分正交多项式的响应面法结合自编程序进行了三维流场的数值模拟.选取流量系数和推力系数为优化指标,选取收敛半角、喉道半径、扩张半角、底部面积和尾部收缩角为研究对象,在两种工况下进行了分析.通过响应面函数的构造及求解,结果表明:扩张半角和收敛半角对气动性能的影响程度约为90%;只考虑流量系数时,收敛半角、喉道半径和底部面积的影响程度约为85%;只考虑推力系数时,扩张半角的影响程度约为85%;只考虑H=0km,Ma=0工况时,扩张半角、收敛半角和喉道半径的影响程度达到90%以上;只考虑H=20km,Ma=2工况时,扩张半角和收敛半角的影响程度达到85%以上.

关 键 词:喷管-后体  试验优化设计  响应面法  流量系数  推力系数
收稿时间:2014/3/21 0:00:00

Integrated aerodynamic optimization design of convergent-divergent nozzle and vehicle afterbody
REN Chao-qi,WANG Qiang and HU Hai-yang.Integrated aerodynamic optimization design of convergent-divergent nozzle and vehicle afterbody[J].Journal of Aerospace Power,2014,29(10):2294-2302.
Authors:REN Chao-qi  WANG Qiang and HU Hai-yang
Institution:School of Energy and Power Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100191, China;Collaborative Innovation Center for Advanced Aero-Engine, Beijing 100191, China;School of Energy and Power Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100191, China;Collaborative Innovation Center for Advanced Aero-Engine, Beijing 100191, China;School of Energy and Power Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100191, China
Abstract:The aerodynamic characteristics of axisymmetric convergent-divergent nozzle and vehicle afterbody were studied. Based on the response surface method of orthogonal polynomials by combining with the self-programming, the three-dimensional flow field was numerically simulated. Flux coefficient and thrust coefficient were selected as the optimization indicators, while half convergence angle, throat radius, half expansion angle, bottom area and tail contraction angle were selected as the research objects to analyse under two conditions. By constructing and solving the function of response surface, the results show that half convergence angle and half expansion angle affect about 90% of aerodynamic characteristics; half convergence angle, throat radius and bottom area affect about 85% when discussing flux coefficient only; half expansion angle affect about 85% when discussing thrust coefficient only; half convergence angle, half expansion angle and throat radius affect more than 90% when discussing condition H=0km, Ma=0 only; half convergence angle and half expansion angle affect more than 85% when discussing condition H=20km, Ma=2 only.
Keywords:nozzle-afterbody  experiment optimization design  response surface method  flux coefficient  thrust coefficient
本文献已被 CNKI 等数据库收录!
点击此处可从《航空动力学报》浏览原始摘要信息
点击此处可从《航空动力学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号