首页 | 本学科首页   官方微博 | 高级检索  
     检索      

航空发动机静承压件适航符合性验证方法
引用本文:王涛,胡殿印,王荣桥.航空发动机静承压件适航符合性验证方法[J].航空动力学报,2016,31(12):2957-2964.
作者姓名:王涛  胡殿印  王荣桥
作者单位:北京航空航天大学 能源与动力工程学院, 北京 100191,北京航空航天大学 能源与动力工程学院, 北京 100191;先进航空发动机协同创新中心, 北京 100191,北京航空航天大学 能源与动力工程学院, 北京 100191;先进航空发动机协同创新中心, 北京 100191
基金项目:国家自然基金(51675024,51305012,51375031);航空科学基金(2014ZB51)
摘    要:对《航空发动机适航规定》(CCAR33-R2)新增条款CCAR33.64(静承压件)进行解读与分析,结合试验设计法、数值模拟法开展针对航空发动机静承压件适航条款的符合性验证方法和验证流程的研究.提出针对CCAR33.64的符合性验证流程,并以某型航空发动机低压涡轮后机匣的模型为例进行验证.选取机匣的最大工作压力和1.1倍最大工作压力分别作为加载条件进行数值模拟,得出最大等效应力分别为453MPa和534MPa,最大机匣变形分别为0.366mm和0.432mm,不会出现永久变形或机匣破裂的情况,满足适航要求.验证了该流程的适航符合性,为制定航空发动机静承压件适航指南提供参考依据.

关 键 词:适航  符合性验证方法  航空发动机  机匣  静承压件
收稿时间:4/8/2015 12:00:00 AM

Compliance verification method for pressurized engine static parts of aircraft engine airworthiness
WANG Tao,HU Dian-yin and WANG Rong-qiao.Compliance verification method for pressurized engine static parts of aircraft engine airworthiness[J].Journal of Aerospace Power,2016,31(12):2957-2964.
Authors:WANG Tao  HU Dian-yin and WANG Rong-qiao
Institution:School of Energy and Power Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100191, China,School of Energy and Power Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100191, China;Collaborative Innovation Center for Advanced Aero-Engine, Beijing 100191, China and School of Energy and Power Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100191, China;Collaborative Innovation Center for Advanced Aero-Engine, Beijing 100191, China
Abstract:The newly added airworthiness terms of CCAR33.64 (pressurized engine static parts) in "aircraft engine airworthiness regulations"(CCAR33-R2) was studied and analyzed. Experiment design method and numerical simulation method were utilized in the process to do research on pressurized engine static parts with compliance verification method and verification flow. Compliance verification process for CCAR33.64 was founded and the example of a certain type of low pressure turbine back rear casing for aircraft engine was performed. The maximum working pressure and 1.1 times maximum working pressure were taken in numerical simulation to analysis. Maximum equivalent stress were 453MPa and 534MPa. Maximum deformation were 0.366mm and 0.432mm. No permanent deformation or rupture of casing proves its compliance which provides reference for establishing airworthiness guide for pressurized engine static parts of aircraft engines.
Keywords:airworthiness  compliance verification method  aircraft engine  casing  pressurized engine static parts
点击此处可从《航空动力学报》浏览原始摘要信息
点击此处可从《航空动力学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号