首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Infrared Irradiance Calibration
Authors:Stephan D Price
Institution:(1) Department of Physics, The Citadel, 171 Moultrie Street, Charleston, SC 29409, USA
Abstract:Infrared astronomical measurements are calibrated against reference sources, usually primary standard stars that are, in turn, calibrated either by direct or indirect means. A direct calibration compares the star with a certified source, typically a blackbody. Indirect methods extrapolate a direct measurement of the flux at one wavelength to the flux at another. Historically, α Lyr (Vega) has been used as the primary standard as it is bright, easily accessible from the northern hemisphere, and is well calibrated in the visual. Until recently, the direct absolute infrared calibrations of α Lyr and those derived from the absolute solar flux scaled to the observed spectral energy distributions of solar type stars increasingly diverged with wavelength from those obtained using a model atmosphere to extrapolate the absolute visual flux of Vega into the infrared. The exception is the direct calibration by the 1996/97 Midcourse Space Experiment of the absolute fluxes for a number of the commonly used infrared standard stars, including Vega.In the mid-1980s, the Air Force Geophysics Laboratory began a program that led to the establishment of a network of stars with which to calibrate infrared space-based sensors. α Lyr and a CMa were adopted as the fundamental references and the absolute 1.2 to 35 µm infrared spectral energy distributions for the 616 secondary standard stars in the network were derived through spectral and photometric comparisons with the primary standards. The stars are also used for calibration at ground-based infrared observatories. For applications in which the network stars may not be bright enough, particularly at the longer infrared wavelengths, planets and the larger asteroids are used. Planets and asteroids move and rather sophisticated thermal modeling of the bodies is required to predict the disk-integrated brightness at a specific time with reasonable accuracy. The Infrared Space Observatory applied such a sophisticated ‘thermo-physical’ model to the largest asteroids to support calibration of the sensors to a claimed accuracy of within 5%. The AFRL program also created a spectral atlas of the brightest stars in the sky that, although they are variable, may be used for calibration if the large(r) attendant uncertainties are acceptable.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号