首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Planetary Radiation Budgets
Authors:Robert Kandel  Michel Viollier
Institution:(1) Laboratoire de Météorologie Dynamique, Institut Pierre Simon Laplace, Ecole Polytechnique, 91128 Palaiseau Cedex, France
Abstract:The energy state of a planet depends fundamentally on its radiation budget. Measurements made from space over past decades have led to significant revisions of ground-based estimates, both of the reflected fraction (the Bond albedo) of solar radiative flux and of the emitted thermal infrared radiation flux, for the Earth as well as for the other planets. After a brief survey of methods and difficulties in accurately determining planetary radiation budgets, we note contradictions in existing tabulations of global parameters, in particular Bond albedo. For the Earth, such contradictions are unjustified, considering that global and annual means as well as the seasonal cycle of Earth Radiation Budget components have now been determined with high accuracy. The Earth's Bond albedo is close to 0.3. Net storage of energy in the Earth-ocean system is close to zero, with a well-established annual cycle of amplitude close to ±12 Wm−2. Some contradictions remain for the other terrestrial planets. For the giant planets, modern reduced values of the Bond albedo imply reduced but still significant internal energy generation.
Keywords:climatology  albedo  planetary energy budget  Earth Radiation Budget  earthshine  annual cycle  clouds
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号