首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Impact of mission requirements and constraints on conceptual launch vehicle design
Institution:1. School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China;2. Key Laboratory of Flight Vehicles Dynamics and Control, Ministry of Education, China;3. School of Electrical Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
Abstract:The objective of this paper is to analyse the impact of mission requirements and constraints on both the optimum vehicle design and the effects on flight path selection for two types of reusable two-stage-to-orbit launch vehicles. The first vehicle type considered provides horizontal take-off and landing capabilities and is intended to be propelled by an airbreathing propulsion system during stage 1 flight. The second vehicle type assumes a vertical launch and is accelerated by a rocket propulsion system during the booster stage ascent flight. The analysis employs a design tool for simultaneous system and mission optimization. It consists of a CAD-based preliminary vehicle design tool, aerodynamic and aerothermodynamic calculation software, flight simulation programs, and a two-level decomposition optimization algorithm enabling simultaneous system and flight optimization. The results to be presented show that the cruise flight requirement for an European launched mission of the airbreathing vehicle results in a loss of 60 % payload mass as compared to a mere accelerated ascent for a near equatorial mission into the same target orbit assuming constant take-off mass. The strong dependencies of mission requirements on both the optimal vehicle design and the ascent performance are determined for the rocket-powered vehicle type by varying the inclination and altitude of the target orbit.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号