首页 | 本学科首页   官方微博 | 高级检索  
     检索      

高超声速飞行器材料与结构气动热环境模拟方法及试验研究
引用本文:吴大方,潘 兵,郑力铭,王岳武,牟 朦,朱 林,李松年.高超声速飞行器材料与结构气动热环境模拟方法及试验研究[J].航天器环境工程,2012,29(3):250-258.
作者姓名:吴大方  潘 兵  郑力铭  王岳武  牟 朦  朱 林  李松年
作者单位:1. 北京航空航天大学航空科学与工程学院,北京,100191
2. 北京航空航天大学宇航学院,北京,100191
基金项目:国家自然科学基金资助项目,中国航天科技集团航天科技创新基金
摘    要:文章介绍了自行研制的石英灯红外辐射式气动加热试验模拟系统以及使用该系统对高超声速飞行器材料与结构进行的高温热评价试验。本热试验系统可实现升温速率高至200℃/s的非线性热冲击过程的动态模拟;能够生成1.8 MW/m2热流密度的瞬态非线性热试验模拟环境;能将试验环境温度提高到1 500℃。在该热试验系统上完成了如下试验研究:1)金属蜂窝板结构在高温950℃非线性热环境下的隔热性能评价试验和数值模拟;2)对SiC/SiC复合材料试件在1 300~1 500℃下的隔热性能评价试验;3)采用轴向非分段加热试验方式对圆柱型壳体结构(长2.1 m)内壁进行高温热环境试验。本试验系统在可控的非线性温升速率、高温高热流密度变化过程的动态模拟、热试验环境模拟的准确性以及非接触式全场高温变形测量等方面的研究成果达到了国际先进水平。

关 键 词:高超声速飞行器  高温热试验  石英灯  红外辐射  气动加热  隔热性能
收稿时间:2012/3/29 0:00:00
修稿时间:2012/5/30 0:00:00

Aerodynamic heating simulation method and testing technique for materials and structures of hypersonic flight vehicles
Wu Dafang,Pan Bing,Zheng Liming,Wang Yuewu,Mu Meng,Zhu Lin and Li Songnian.Aerodynamic heating simulation method and testing technique for materials and structures of hypersonic flight vehicles[J].Spacecraft Environment Engineering,2012,29(3):250-258.
Authors:Wu Dafang  Pan Bing  Zheng Liming  Wang Yuewu  Mu Meng  Zhu Lin and Li Songnian
Institution:1. School of Aeronautics Science and Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100191, China; 2. School of Astronautics, Beijing University of Aeronautics and Astronautics, Beijing 100191, China)
Abstract:This paper describes the principles and capabilities of a self-developed radiation-based aerodynamic heating simulation system, and demonstrates its applications in the thermal testing and high-temperature strength testing of the materials and structures used in hypersonic flight vehicles. The aerodynamic heating simulation system is capable of producing nonlinear dynamic thermal shocks with a heating rate up to 200 ℃/s, a heat flux of 1.8 MW/m2, and a highest temperature up to 1500 ℃. A number of experiments were carried out on the developed heating simulation system. These experiments include: (I) the heat-insulation property testing for a high-temperature composite materials SiC/SiC specimen at high-temperature of 1300- 1500 ℃; (2) experimental and numerical investigations of the heat-shielding properties of metallic honeycomb panel structure in non-linear thermal environment up to 950 ℃; (3) high-temperature thermal environment simulation experiment for the inner surface of a 2.1 m long circular shell, which uses a novel axial non-segmented single regional approach to improve the uniformity of the in-wall temperature field of a large structure. By using non-contact optical metrology, the full-field high-temperature deformation can be measured up to 1550 ℃. This aerodynamic heating simulation system and the testing methods reach or approach the advanced international standards in terms of the controllable non-linear rate of the temperature rise, the dynamic change process simulation of high-temperature and high heat flux density, the accuracy in the thermal experimental environment simulation and the non-contact full-field deformation measurement method for high-temperature objects.
Keywords:hypersonic vehicle  high-temperature thermal test  quartz lamp  infrared radiation  aerodynamic heating  thermal insulation property
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《航天器环境工程》浏览原始摘要信息
点击此处可从《航天器环境工程》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号