首页 | 本学科首页   官方微博 | 高级检索  
     检索      

火星环绕器推进系统建模与可视化研究
引用本文:李心瞳,张源俊,李萌,朱新波,谢攀,孙洁.火星环绕器推进系统建模与可视化研究[J].宇航学报,2022,43(2):221-231.
作者姓名:李心瞳  张源俊  李萌  朱新波  谢攀  孙洁
作者单位:1. 北京航空航天大学宇航学院,北京 100191; 2. 空军工程大学防空反导学院,西安 710051;3. 上海卫星工程研究所,上海 201109; 4. 探月与航天工程中心,北京 100190
摘    要:针对液体推进系统的联合仿真演示需求,基于模块化建模思想,根据守恒方程和状态方程,应用AMESim开发了通用液体火箭发动机组件模块库并建立了推进系统仿真模型,利用Simulink和LabVIEW开发了仿真控制模块和视景仿真模型,搭建了全系统联合仿真环境与平台。结合某型火星环绕器推进系统的任务要求以及具体构成,实现了该火星环绕器推进系统全系统全过程的联合仿真和仿真结果可视化,并依据地面试验数据对系统仿真模型的可靠性进行了验证。结果表明,组件仿真结果最大误差不超过5.6%,推力最大误差不超过1.29%;视景模型可以对发动机各部件的实时工作状态进行显示,更加直观地展示仿真结果。联合仿真平台可以有效实现推进系统模型、控制以及可视化的集成,加快仿真速度,缩短系统的设计周期,降低系统设计复杂程度,在提高模型通用性的同时降低研发成本,提高了液体火箭发动机设计水平。研究内容为空间飞行器推进系统的研究与未来发展提供了有益参考。

关 键 词:液体火箭推进系统  可视化  联合仿真  
收稿时间:2021-02-07

Research on Modeling and Visualization of Mars Orbiter Propulsion System
LI Xin tong,ZHANG Yuan jun,LI Meng,ZHU Xin bo,XIE Pan,SUN Jie.Research on Modeling and Visualization of Mars Orbiter Propulsion System[J].Journal of Astronautics,2022,43(2):221-231.
Authors:LI Xin tong  ZHANG Yuan jun  LI Meng  ZHU Xin bo  XIE Pan  SUN Jie
Institution:1. School of Astronautics, Beihang University, Beijing 100191, China; 2. Air Defense and Antimissile College, Air Force Engineering University, Xi ’an 710051, China; 3. Shanghai Institute of Satellite Engineering, Shanghai 201109, China; 4. Lunar Exploration and Space Engineering Center, Beijing 100190, China
Abstract:Aiming at the demand for co simulation demonstration of a liquid propulsion system, based on the modular modeling idea, and according to conservation equations and state equations, this paper uses AMESim to develop a general liquid rocket engine component module library and establish a propulsion system simulation model, and uses Simulink and LabVIEW to design a simulation control module and the visual model, thus building the co simulation environment and platform. Combining the mission requirements and specific composition of the Mars orbiter propulsion system, the co simulation of the Mars orbiter propulsion entire system is realized and the results are visualized. The reliability of the system simulation model is verified according to the ground test data. The results show that the maximum error of components does not exceed 5.6%, and the maximum error of thrust does not exceed 1.29%.The visual model can display the real time working status of various engine components, and display the simulation results more intuitively. The co simulation platform can effectively realize the integration of propulsion system model, control and visualization, accelerate the simulation speed, shorten the design cycle of the system, reduce the complexity of the system design, improve the versatility of the model, reduce the research and development cost, and improve the design level of the liquid rocket engine. The research content provides a useful reference for the research and future development of spacecraft propulsion system.
Keywords:Liquid rocket propulsion system  Visualization  Co simulation  
点击此处可从《宇航学报》浏览原始摘要信息
点击此处可从《宇航学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号