首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Full mode flight dynamics modelling and control of stopped-rotor UAV
Institution:1. School of Aeronautics, Northwestern Polytechnical University, Xi’an 710072, China;2. School of Civil Aviation, Northwestern Polytechnical University, Xi’an 710072, China
Abstract:The Stopped-Rotor (SR) UAV combines the advantages of vertical take-off and landing of helicopter and high-speed cruise of fixed-wing aircraft. At the same time, it also has a unique aerodynamic layout, which leads to great differences in the control and aerodynamic characteristics of various flight modes, and brings great challenges to the flight dynamics modelling and control in full-mode flight. In this paper, the flight dynamics modelling and control method of SR UAV in full-mode flight is studied. First, based on the typical flight profile of SR UAV when performing missions, using the theory and method of fuzzy mathematics, the T-S flight dynamics model of SR UAV in full-mode flight is established by synthesizing the flight dynamics model of each flight mode. Then, an explicit model tracking and parameter adjusting control system based on fuzzy theory is designed to enhance the stability of the inner loop of SR UAV in full-mode flight, which effectively reduces the coupling between axes and improves the control quality of the system. Finally, the outer loop control system is designed by using classical control method, and the control law of SR UAV in full-mode automatic flight is obtained. The simulation results show that the proposed control system design method is feasible and effective, which lays a solid foundation for the subsequent engineering implementation of the SR UAV.
Keywords:Full-mode control  High-speed helicopter  Model building  Stopped-rotor aircraft  Variable parameter stabilization
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号