首页 | 本学科首页   官方微博 | 高级检索  
     

基于支持向量机的滚动轴承状态寿命评估
引用本文:洪杰,韩磊,苗学问,马艳红. 基于支持向量机的滚动轴承状态寿命评估[J]. 北京航空航天大学学报, 2010, 36(8): 896-899
作者姓名:洪杰  韩磊  苗学问  马艳红
作者单位:北京航空航天大学,能源与动力工程学院,北京,100191;北京航空航天大学,能源与动力工程学院,北京,100191;北京航空航天大学,能源与动力工程学院,北京,100191;北京航空航天大学,能源与动力工程学院,北京,100191
基金项目:航空科学基金资助项目(2007ZB51021)
摘    要:
应用状态寿命描述滚动轴承的使用寿命,并建立了滚动轴承的状态寿命评估模型.状态寿命评估模型建模的关键是振动信号的特征提取和状态的识别算法.针对滚动轴承振动的特点,提取小波包重构信号的频带能量构造特征向量,利用支持向量机作为辨识算法建立滚动轴承状态寿命评估模型.滚动轴承全寿命试验验证了模型的有效性和可信性.

关 键 词:滚动轴承  状态寿命  小波包变换  支持向量机
收稿时间:2009-06-29

Assessment based on support vector machine for rolling bearing grade-life
Hong Jie,Han Lei,Miao Xuewen,Ma Yanhong. Assessment based on support vector machine for rolling bearing grade-life[J]. Journal of Beijing University of Aeronautics and Astronautics, 2010, 36(8): 896-899
Authors:Hong Jie  Han Lei  Miao Xuewen  Ma Yanhong
Affiliation:School of Jet Propulsion, Beijing University of Aeronautics and Astronautics, Beijing 100191, China
Abstract:
Grade-life was used to describe rolling bearing-s service life, and an assessment model was presented for bearing-s Grade-life. Signal feature extraction and pattern recognition algorithm were keys to construct the model. Vibration signals of the rolling bearing were analyzed, and the wavelet packet analysis theory was adopted to extract the grade-life characteristics. Through signal reconfiguration with wavelet package to extract energy feature of various frequency bands acting as the life feature vector was input into support vector machine (SVM) to realize the mapping between the grade-life vector and the grade-life of rolling bearing, and the model in establishing the identification by using bearing test stand run-to-failure data. The validity and creditability of model has been demonstrated by bearing test stand dates.
Keywords:rolling bearing  grade-life  wavelet packet transform  support vector machine (SVM)
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《北京航空航天大学学报》浏览原始摘要信息
点击此处可从《北京航空航天大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号