摘 要: | 为了实现多重应力下滚动轴承的剩余寿命预测,有效利用不用应力下的退化数据,提出了一种基于加速模型和贝叶斯(Bayesian)理论的滚动轴承剩余寿命预测方法。通过拟合优度检验和威布尔(Weibull)概率图检验法对滚动轴承试验中的数据进行有效性分析。利用switching Kalman filters(SKF)判断滚动轴承各时刻的退化状态。当滚动轴承进入加速退化时,用指数模型拟合轴承退化过程,利用广义线性对数模型表示退化模型参数与应力的关系,根据修正后的轴承实时退化数据利用贝叶斯算法更新模型参数,得到滚动轴承剩余寿命的概率密度函数,从而实现滚动轴承剩余寿命预测。采用XJTU-SY轴承数据集进行验证,预测结果的均方根误差在20 min以内,证明该方法能够有效预测滚动轴承的剩余寿命。
|