首页 | 本学科首页   官方微博 | 高级检索  
     

基于贝叶斯网络的多状态机载系统安全性评估方法
引用本文:陈康,陆中. 基于贝叶斯网络的多状态机载系统安全性评估方法[J]. 航空计算技术, 2014, 0(5): 34-37
作者姓名:陈康  陆中
作者单位:南京航空航天大学民航学院,江苏南京,211106
基金项目:国家自然科学基金与民航联合研究基金项目资助(U1333118);江苏省自然科学基金项目资助(BK20130811);中央高校基本科研业务费项目资助
摘    要:传统的安全性评估方法不适用于具有多状态属性的现代机载系统。根据系统与系统组成单元之间的状态关系,构建了基于贝叶斯网络的机载系统多状态安全性模型;运用通用生成函数给出了贝叶斯网络非根节点的条件概率表,基于变量消元法提出了系统失效状态发生概率计算方法,推导了系统组成单元重要度算法。结合某型飞机副翼控制系统给出了应用实例。结果表明,方法为解决多状态机载系统的安全性评估问题提供了一种简洁直观的方法,能够有效评估机载系统的安全性水平,确定各单元对系统安全性中的影响。

关 键 词:系统安全性评估  贝叶斯网络  机载系统  通用生成函数  多状态

Research on Safety Analysis Approach of Airborne System Based on Bayesian Network
CHEN Kang,LU Zhong. Research on Safety Analysis Approach of Airborne System Based on Bayesian Network[J]. Aeronautical Computer Technique, 2014, 0(5): 34-37
Authors:CHEN Kang  LU Zhong
Affiliation:( College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing,211106, China)
Abstract:Traditional safety analysis methods are not suitable for modern airborne system with multi-state probability .In this paper ,a Bayesian Network based multi-state safety model of airborne system is built according to the state relationship between the system and its constituting components .Universal genera-ting function is used to build the conditional probability table of the non-root nodes .Based on the varia-ble elimination,a method of computing the system failure state′s probability is proposed .The algorithm of the importance of each component in the system is inferred .Combined with the aileron control system of an aircraft an example is given .The result shows that this method in this paper provides a simple and in-tuitive measure to deal with the safety analysis of airborne system with multi-state property .The airborne system safety level can be evaluated and the affection of each component to the system safety can be con-firmed effectively .
Keywords:system safety analysis  Bayesian network  airborne system  universal generating function  multi-state
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号