首页 | 本学科首页   官方微博 | 高级检索  
     

防空导弹引信和导引头探测信息的融合优化研究
引用本文:韩俊杰,李为民,黄树采. 防空导弹引信和导引头探测信息的融合优化研究[J]. 宇航学报, 2006, 27(2): 210-212,296
作者姓名:韩俊杰  李为民  黄树采
作者单位:空军工程大学导弹学院,陕西,三原,713800
基金项目:空军工程大学校科研和校改项目
摘    要:
分析防空导弹引信和导引头探测目标信息的互补性和信息融合优化的可行性,提出了前馈神经网络MLSP的优化步长OBP学习算法.采用最优化的原理优化步长的选取很好的解决了传统BP算法收敛速度慢和产生振荡的缺点,构造了一个用于防空导弹引信和导引头探测目标信息的融合优化模型,并以某型防空导弹武器系统的引信和导引头分系统为例,仿真结果说明了该模型的有效性和可用性.

关 键 词:防空导弹  引信  导引头  前馈神经网络
文章编号:1000-1328(2006)02-0210-03
收稿时间:2005-03-14
修稿时间:2005-03-142005-07-27

Fusion and Optimality of Ground-to-air Missile Fuze and Seeker Target Detection Information
HAN Jun-jie,LI Wei-min,HUANG Shu-cai. Fusion and Optimality of Ground-to-air Missile Fuze and Seeker Target Detection Information[J]. Journal of Astronautics, 2006, 27(2): 210-212,296
Authors:HAN Jun-jie  LI Wei-min  HUANG Shu-cai
Affiliation:Missile Institute of Air Force Enjineering University, Shanxi Shanyuan 713800, China
Abstract:
Based on the targect detection information complementarity of ground-to-air missile fuze and seeker, the feasibility of their fusion and optimality is analyzed. An optimal learning rate OBP algorithm of the feed forward neural network is proposed. The problems of convergence rates and oscillations is corrected in the favor of optimality method. The fusion and optimality model used on target detection information of the ground-to-air missile fuze and seeker is structured. In the finial, by an experiment dealing with certain fuze and seeker, the usability and effectiveness of the model is testd.
Keywords:Ground-to-air missile   Fuze   Seeker   Feed forward neural networks
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号