基函数宽度对RBF神经网络气动力模型精度的影响研究 |
| |
作者姓名: | 寇家庆 张伟伟 |
| |
作者单位: | 西北工业大学 翼型叶栅空气动力学国家重点实验室,西北工业大学 翼型叶栅空气动力学国家重点实验室 |
| |
基金项目: | 国家自然科学基金项目(面上项目,重点项目,重大项目);新世纪优秀人才支持计划; |
| |
摘 要: | 将带输出反馈的RBF(recursive radial basis function, RRBF)神经网络用于构建非定常气动力模型,能够得到一种动态非线性气动力降阶模型(reduced order model, ROM)。隐含层神经元的基函数宽度是该气动力模型的一个重要参数。为了研究基函数宽度对RRBF神经网络的影响,首先通过数学分析和计算仿真研究了训练过程中宽度与神经网络结构之间的关系,而后用NACA0012翼型俯仰运动作为算例,研究模型在不同训练信号、延迟阶数和流动状态的情况进行测试。测试结果表明,基函数宽度对此类非定常气动力模型的稳定性及泛化能力都有较大影响;最优宽度的选择随训练及预测信号的变化有所不同;较多样本时,通常选择55~75的宽度能够保证非定常气动力模型具有较高的预测精度。通过对随机俯仰运动样本的预测结果,验证了宽度的最优选择范围。
|
关 键 词: | 径向基函数 神经网络 非定常气动力 气动力建模 宽度 |
收稿时间: | 2015-05-12 |
修稿时间: | 2015-06-04 |
|
| 点击此处可从《航空工程进展》浏览原始摘要信息 |
|
点击此处可从《航空工程进展》下载免费的PDF全文 |
|