首页 | 本学科首页   官方微博 | 高级检索  
     

基于卷积门控循环网络的滚动轴承故障诊断
作者姓名:杨平  苏燕辰
作者单位:西南交通大学机械工程学院,成都,610031
摘    要:针对许多基于深度学习的滚动轴承故障诊断方法在小样本数据集下诊断性能下降的问题,提出一种基于卷积门控循环神经网络的轴承故障诊断模型。该模型使用两层的卷积网络来从输入信号中提取特征,同时使用tanh函数作为激活函数,且池化层使用大池化核来进行重叠下采样。将所提取得到的高层特征连接到双向门控循环网络。合并循环网络正向和逆向的最后一个状态,并连接一层全连接层进行输出。选用凯斯西储大学的轴承故障数据集来验证模型在小样本数据集下的诊断性能,实验结果表明,相比于其他类型的模型,该模型在仅有20个训练样本的情况下依然保持97%的识别准确率。 

关 键 词:滚动轴承  故障诊断  卷积网络  门控循环单元  重叠池化
收稿时间:2019-04-14
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《航空动力学报》浏览原始摘要信息
点击此处可从《航空动力学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号