首页 | 本学科首页   官方微博 | 高级检索  
     

用自适应小波神经网络辨识动态实验数据
引用本文:陈农,贾区耀. 用自适应小波神经网络辨识动态实验数据[J]. 飞行力学, 2001, 19(1): 67-69
作者姓名:陈农  贾区耀
作者单位:北京空气动力研究所,
摘    要:
在气动动态实验中,往往飞行器气动模型是非线性的,很难对动态系统进行正确建模,因此无法得到准确的气动参数值。而采用自适应小波神经网络,无需对该动态系统建模,就可准确地辨识出气动动稳定特性,同时,精度较高、收敛速度较快。采用该方法对某导弹模型风洞自由飞实验结果进行了辨识与动稳定性分析,结果表明用自适用小波神经网络辨识安全可靠。

关 键 词:动态气动实验 非线性模型 小波神经网络 动稳定性 飞行器 导弹 模型 风洞
文章编号:1002-0853(2001)01-0067-03
修稿时间:2000-09-08

Identification by adapting wavelet neural network of dynamic experiment
CHEN Nong,JIA Qu-yao. Identification by adapting wavelet neural network of dynamic experiment[J]. Flight Dynamics, 2001, 19(1): 67-69
Authors:CHEN Nong  JIA Qu-yao
Abstract:
In dynamic aerodynamic test, aerodynamic models of flight vehicle are non linear.It is very difficult to model the dynamic system correctly,so it is impossible to obtained the accurate aerodynamic parameter. Adoption of adapting wavelet neural network needn't modeling with dynamic system, the accurate aerodynamic dynamic stability will be identified,accurate,fastter convergence rate can also be obtained by using the method.At last,identification and dynamic stability analysis are taken by a missile in model free flight test, identification by adapting wavelet neural network is practical,make it become a method that solve non linear problem.
Keywords:dynamic aerodynamic test  non linear model  wavelet neural network  dynamic stability
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号