首页 | 本学科首页   官方微博 | 高级检索  
     

主成份估计的特征根因子筛选方法
引用本文:刘利生,李本津. 主成份估计的特征根因子筛选方法[J]. 宇航学报, 1987, 0(2)
作者姓名:刘利生  李本津
作者单位:洛阳跟踪和通信技术研究所(刘利生),洛阳跟踪和通信技术研究所(李本津)
摘    要:
线性回归模型的主成份估计具有模型紧致和减弱病态的作用,并提高参数估计效果,但是如何筛选特征根却是主成份估计的重要问题。本文找到了主成份估计的特征根与残差平方和之间的确定关系,并根据模型拟合优度和减弱测量随机噪声对参数估计的影响,提出主成份估计筛选特征根的准则。由于特征根与残差平方和具有确定关系,使用这个准则就极为方便,它既可以选到最优组合,又大大减少了计算量,这就具有实际使用价值。

关 键 词:参数估计  线性回归模型  最小二乘方法  主成分估计  拟合  计算机模拟

SIEVING METHOD FOR CHARACTERISTIC ROOT FACTOR OF PRINCIPAL COMPONENT ESTIMATE
Liu Hishang Li Benjin. SIEVING METHOD FOR CHARACTERISTIC ROOT FACTOR OF PRINCIPAL COMPONENT ESTIMATE[J]. Journal of Astronautics, 1987, 0(2)
Authors:Liu Hishang Li Benjin
Affiliation:Luoyang Institute of Tracking and Telecommunication Technology
Abstract:
The Principa Clomponent Estimate of the linear regression has the function of model compactnees and Weakening of abnormal state. It may also raise the efficiency in estimating paramaters. However, how to sieve characteristic roots is an important problem of the Principal Component Estimate. This paper has found the certain relation between the cha racteristic roots and residual sum of squares of Principal Component Estimate, and has advanced a criterion for sieving characteristic roots of Principal Component Estimate according to the fitting merits of the model and weakening the effection of measuring random noise to the estimate of parameters. Because characteristic roots and residue sum of squares have the certain relation, using these criterions is very convenient. Thus it not only may select the optimal combination, but also minimize the complexity of computation, so that it is valuable in practice.
Keywords:Parameter estimation   Linear regression model   Least squate method   Principal Component Estimation   Fitting   Computer simulation.
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号