首页 | 本学科首页   官方微博 | 高级检索  
     

基于支持向量机的组合分类方法及应用
引用本文:胡金海,谢寿生,杨帆,蔡开龙,王海涛. 基于支持向量机的组合分类方法及应用[J]. 推进技术, 2007, 28(6): 669-673
作者姓名:胡金海  谢寿生  杨帆  蔡开龙  王海涛
作者单位:空军工程大学,工程学院,陕西,西安,710038
摘    要:为了解决采用神经网络、决策树作为弱分类器的AdaBoost组合分类存在的不足,进一步改善组合分类效果,提出采用支持向量机(SVM)作为弱分类器的一种新的组合分类诊断方法——AdaBoost-SVM。该方法没有采用一个固定的SVM的核参数,而是自适应调整SVM中的核参数,从而得到一组有效的SVM弱分类器。通过对基准数据库的测试及航空发动机故障样本的诊断,结果表明,所提AdaBoost-SVM方法较好地解决了现有的Ada-Boost组合分类方法中存在的弱分类器本身参数选取困难问题及训练轮数的合理选取问题,并具有更好的泛化性能,更适合对分散程度较大、聚类性较差的航空发动机故障样本进行分类。

关 键 词:航空发动机  故障诊断  组合分类方法   AdaBoost算法   支持向量机
文章编号:1001-4055(2007)06-0669-05
收稿时间:2006-12-01
修稿时间:2007-06-29

Ensemble of classification methods based on SVM and its application in diagnosis
HU Jin-hai,XIE Shou-sheng,YANG Fan,CAI Kailong and WANG Hai-tao. Ensemble of classification methods based on SVM and its application in diagnosis[J]. Journal of Propulsion Technology, 2007, 28(6): 669-673
Authors:HU Jin-hai  XIE Shou-sheng  YANG Fan  CAI Kailong  WANG Hai-tao
Abstract:In order to solve the shortage problem of ensemble of classification using neural networks and decision trees as weak learner and improve the effect of ensemble of classification,a novel approach of classification ensemble named AdaBoost-SVM is presented,which uses SVM as weak learner for AdaBoost.To obtain a set of effective SVM weak learner,this algorithm adaptively adjusts the kernel parameter in SVM instead of using a fixed one.The practical applications in UCI repository and aeorengine faulty samples show that the proposed method solves the problem of selection difficuty for weak learner parameter and learning cycles in the existing AdaBoost methods and it has better generalization performance and is more fitting to classify the faulty samples scattered greatly.
Keywords:Aeroengine  Fault diagnosis  Ensemble of classification methods   Adaboost   Support vector machines
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《推进技术》浏览原始摘要信息
点击此处可从《推进技术》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号