首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Effects of B on the Microstructure and Oxidation Resistance of Nb-Ti-Si-based Ultrahigh-temperature Alloy
Authors:Wang Jun  Guo Xiping  Guo Jinming
Institution:State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi''an 710072, China
Abstract:Nb-Ti-Si-based ultrahigh-temperature alloys concocted with boron ranging from 0 to 2 at% are prepared by arc-melting technology. The effects of adding boron on their as-melted microstructure and oxidation resistance are analyzed. The (Nb,Ti)ss, β-(Nb,Ti)5Si3 and γ-(Nb,Ti)5Si3 exist in Nb-22Ti-16Si-6Cr-3Al-4Hf alloy, while (Nb,Ti)ss, α-(Nb,Ti)5Si3 and γ-(Nb,Ti)5Si3 are present in Nb-22Ti-16Si-6Cr-3Al-4Hf-1B and Nb-22Ti-16Si-6Cr-3Al-4Hf-2B alloys. The oxidation of Nb-Ti-Si-based ultrahigh-temperature alloys is dominated by the diffusion of oxygen through (Nb,Ti)ss. Compared to boron-free alloys, the boron-containing alloys have significantly lower oxidation rate when oxidized at 1 200 °C for less than 50 h, but, for more than 50 h, their oxidation resistance deteriorates.
Keywords:oxidation resistance  constituent phase  oxidation kinetics  ultrahigh-temperature alloy  arc-melting
本文献已被 万方数据 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号