首页 | 本学科首页   官方微博 | 高级检索  
     

Cahn-Hilliard方程的行波解
引用本文:刘深泉. Cahn-Hilliard方程的行波解[J]. 北京航空航天大学学报, 1998, 24(5): 584-587
作者姓名:刘深泉
作者单位:北京航空航天大学 应用数理系
基金项目:国家自然科学基金(19572014)资助项目
摘    要:主要利用奇异摄动方法,得到一维Cahn-Hilliard方程行波解形式的内、外解.两者匹配得到整体行波解.这个结果的特点是,它不仅将高阶偏微分方程的解用内外解匹配好,而且完全满足方程的边界条件和初始条件.当长时间变化时, Cahn-Hilliard方程的解以行波结构为极限状态.此结果很好地解释Cahn-Hilliard方程的现有理论及数值结果,实际模型和方程的性质也完全符合.

关 键 词:行波解  奇异摄动  内解  外解  匹配
收稿时间:1997-03-12

Traveling Waves of the Cahn-Hilliard Equation
Liu Shenquan,Lu Qishao,Wang Qi. Traveling Waves of the Cahn-Hilliard Equation[J]. Journal of Beijing University of Aeronautics and Astronautics, 1998, 24(5): 584-587
Authors:Liu Shenquan  Lu Qishao  Wang Qi
Affiliation:Beijing University of Aeronautics and Astronautics,Dept. of Applied Mathematics and Physics
Abstract:The asymptotic perturbation method is used to deal with the Cahn Hilliard equation and obtain the inner and outer solutions of traveling waves. The two solutions are matched into one solution of the equation. The feature of the method not only matches the inner and outer solutions of the higher order partial differential equation, but also satisfies the boundary condition and initial condition. After a long time evolution, the solutions of the Cahn Hillard equation have the structures of traveling waves as the limit states. The result in this paper can explain the theoretic and numerical simulation results of the Cahn Hillard equation. The property of model fits well with that of the equation.
Keywords:traveling wave  asymptotic perturbation  inner solution  outer solution  matching
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《北京航空航天大学学报》浏览原始摘要信息
点击此处可从《北京航空航天大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号