首页 | 本学科首页   官方微博 | 高级检索  
     

曲线物面边界条件在DGM中的应用研究
引用本文:郝海兵,李蔷薇,梁益华. 曲线物面边界条件在DGM中的应用研究[J]. 航空计算技术, 2014, 0(1): 13-16,22
作者姓名:郝海兵  李蔷薇  梁益华
作者单位:[1]中航工业西安航空计算技术研究所,陕西西安710068 [2]中国东方航空西北分公司,陕西西安712035
基金项目:国家自然科学基金项目资助(50976017);国家863计划项目资助(2012AA0lA304)
摘    要:
基于二维非结构网格,采用高精度间断Galerkin有限元方法数值求解定常Euler方程。为了有效克服传统的反射物面边界条件在物面处易于生成伪熵降低计算精度的缺陷,提出一种曲线物面边界条件,从而实现对物理模型而不是数值模型进行数值模拟。对经典圆柱亚音速无粘绕流进行数值模拟,结果表明:采用曲线物面边界条件之后,流场解的精度得到很好的提高;此外,在非常稀疏的网格上,通过提高基函数的阶次仍可以得到高精度的数值解。

关 键 词:间断Galerkin有限元方法  Euler方程  非结构网格  曲线边界条件

Curvature Wall Boundary Conditions for DGM Solving 2D Euler Equations
Affiliation:HAO Hai- bing, LI Qiang- wei, LIANG Yi- hua ( 1. Xi'an Aeronautics Computing Technique Research Institute ,AVIC,Xi'an 710068, China ; 2. Northwest Branch, China Eastern Airlines ,Xi'an 712035, China)
Abstract:
The main purpose of this paper is to develop high- order discontinuous Galerkin method (DGM) suitable for the numerical solutions of the Euler equations on unstructured grids. In this paper, flow was modeled by around a physical rather than computational geometry and curvature wall boundary conditions were implemented instead of traditional reflecting boundary conditions. The Numerical results indicate that significant improvement in quality of the solution is achieved. Besides, highly accurate solu- tions can be obtained using high- order DGM even on very coarse grids.
Keywords:discontinuous Galerkin methods  Euler equations  unstructured grid  curve boundary condi-tions
本文献已被 CNKI 维普 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号