首页 | 本学科首页   官方微博 | 高级检索  
     

一种基于冗余测量的自适应卡尔曼滤波算法
引用本文:周启帆,张海,王嫣然. 一种基于冗余测量的自适应卡尔曼滤波算法[J]. 航空学报, 2015, 36(5): 1596-1605. DOI: 10.7527/S1000-6893.2015.0001
作者姓名:周启帆  张海  王嫣然
作者单位:北京航空航天大学 自动化科学与电气工程学院, 北京 100191
基金项目:卫星应用研究院创新基金项目,Open Research Fund of The Academy of Satellite Application
摘    要:针对目前自适应滤波算法的不足,在测量系统量测噪声方差未知的情况下,设计了一种基于冗余测量的自适应卡尔曼滤波(RMAKF)算法。通过对系统冗余测量值的一阶、二阶差分序列进行有效的统计分析,可以准确估计系统量测噪声统计特性,进而在滤波过程中自适应调节噪声方差阵R,提高滤波精度。以全球定位系统/惯性导航系统(GPS/INS)松组合导航系统为对象进行了仿真实验,结果表明该算法在测量系统噪声特性未知或发生改变时,可对其进行准确估计,在采用低精度惯性器件情况下,滤波结果较其他主要自适应卡尔曼滤波算法有较明显的改进。

关 键 词:冗余测量  差分序列  噪声特性  自适应卡尔曼滤波  组合导航  
收稿时间:2014-06-27
修稿时间:2015-01-14

A redundant measurement adaptive Kalman filter algorithm
ZHOU Qifan,ZHANG Hai,WANG Yanran. A redundant measurement adaptive Kalman filter algorithm[J]. Acta Aeronautica et Astronautica Sinica, 2015, 36(5): 1596-1605. DOI: 10.7527/S1000-6893.2015.0001
Authors:ZHOU Qifan  ZHANG Hai  WANG Yanran
Affiliation:School of Automation Science and Electrical Engineering, Beihang University, Beijing 100191, China
Abstract:In order to solve the problems of current adaptive Kalman filter, this paper proposes a redundant measurement adaptive Kalman filter (RMAKF) in the situation that the measurement noise variance is unknown. This method could accurately estimate the statistical characteristics of measurement noise through calculating the first and second order difference sequences and adaptively tuning the variance matrix of measurement noise R in the process to improve the accuracy and precision. The simulation results show that when the algorithm is applied in GPS/INS loosely coupled integrated system, the proposed method is capable of estimating the noise variance when the statistical characteristic is unknown or changed. The simulation also shows that the filtering results has a great improvement compared with other adaptive Kalman filter when using low-accuracy inertial sensors.
Keywords:redundant measurement  difference sequence  noise characteristic  adaptive Kalman filter  integrated navigation system
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《航空学报》浏览原始摘要信息
点击此处可从《航空学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号