Development process of muzzle flows including a gun-launched missile |
| |
Authors: | Zhuo Changfei Feng Feng Wu Xiaosong |
| |
Affiliation: | School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China |
| |
Abstract: | Numerical investigations on the launch process of a gun-launched missile from the muzzle of a cannon to the free-flight stage have been performed in this paper. The dynamic overlapped grids approach are applied to dealing with the problems of a moving gun-launched missile. The high-resolution upwind scheme (AUSMPW+) and the detailed reaction kinetics model are adopted to solve the chemical non-equilibrium Euler equations for dynamic grids. The development process and flow field structure of muzzle flows including a gun-launched missile are discussed in detail. This present numerical study confirms that complicated transient phenomena exist in the shortly launching stages when the gun-launched missile moves from the muzzle of a cannon to the freeflight stage. The propellant gas flows, the initial environmental ambient air flows and the moving missile mutually couple and interact. A complete structure of flow field is formed at the launching stages, including the blast wave, base shock, reflected shock, incident shock, shear layer, primary vortex ring and triple point. |
| |
Keywords: | Blast flow field Chemical reaction Computational fluid dynamics Dynamic overlapped grids Gun-launched missile Muzzle flows |
本文献已被 CNKI 万方数据 等数据库收录! |
| 点击此处可从《中国航空学报》浏览原始摘要信息 |
|
点击此处可从《中国航空学报》下载全文 |
|