首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Dynamics modeling and control of a transport aircraft for ultra-low altitude airdrop
Authors:Liu Ri  Sun Xiuxia  Dong Wenhan
Institution:Aeronautics and Astronautics Engineering College, Air Force Engineering University, Xi''an 710038, China
Abstract: The nonlinear aircraft model with heavy cargo moving inside is derived by using the separation body method, which can describe the influence of the moving cargo on the aircraft attitude and altitude accurately. Furthermore, the nonlinear system is decoupled and linearized through the input-output feedback linearization method. On this basis, an iterative quasi-sliding mode (SM) flight controller for speed and pitch angle control is proposed. At the first-level SM, a global dynamic switching function is introduced thus eliminating the reaching phase of the sliding motion. At the second-level SM, a nonlinear function with the property of "smaller errors correspond to bigger gains and bigger errors correspond to saturated gains" is designed to form an integral sliding manifold, and the overcompensation of the integral term to big errors is weakened. Lyapunovbased analysis shows that the controller with strong robustness can reject both constant and time-varying model uncertainties. The performance of the proposed control strategy is verified in a maximum load airdrop mission.
Keywords:Dynamics modeling  Feedback linearization  Flight control  Nonlinear system  Sliding mode control  Uncertainty
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《中国航空学报》浏览原始摘要信息
点击此处可从《中国航空学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号