首页 | 本学科首页   官方微博 | 高级检索  
     

一种星-箭连接动态界面力的深度学习反演方法
引用本文:顾乃建,武文华,郭杏林. 一种星-箭连接动态界面力的深度学习反演方法[J]. 宇航学报, 2022, 43(12): 1618-1628. DOI: 10.3873/j.issn.1000-1328.2022.12.004
作者姓名:顾乃建  武文华  郭杏林
作者单位:1. 大连理工大学工业装备与结构分析国家重点实验室,大连 116024; 2. 大连理工大学宁波研究院,宁波 315000
基金项目:国家重点研发计划(2021YFA1003501);国家自然科学基金(U1906233);山东省联合基金项目(2019JZZY010801);深圳市自由探索类基础研究项目(2021Szvup021)
摘    要:
针对于星-箭连接动态界面力无法通过力传感器直接测量,且典型时域动载反演方法难以准确计算界面力的时域变化等难点,提出了基于长短时记忆(LSTM)神经网络的星-箭界面力深度学习反演方法。首先通过卫星地面测试试验得到数据依据,以卫星主体结构的加速度测量数据为输入层,以星-箭界面力测量数据为输出层,利用LSTM神经网络建立输入和输出间的反演映射关系模型,实现卫星在发射过程中较高精度的界面力反演。进而,设计并开展了某典型卫星结构的正弦扫频和随机振动实验,测试LSTM界面力反演方法的可行性。结果分析可知,所提出的基于LSTM深度学习反演方法能够精确地获得动态界面力时程数据,两项性能指标均优于目前典型的载荷反演方法。

关 键 词:星-箭连接结构  动态界面力  反演  深度学习  LSTM神经网络  
收稿时间:2022-07-04

A Deep Learning Inversion Method for Dynamic Interface Force of Satellite rocket Connection
GU Naijian,WU Wenhua,GUO Xinglin. A Deep Learning Inversion Method for Dynamic Interface Force of Satellite rocket Connection[J]. Journal of Astronautics, 2022, 43(12): 1618-1628. DOI: 10.3873/j.issn.1000-1328.2022.12.004
Authors:GU Naijian  WU Wenhua  GUO Xinglin
Affiliation:1. State Key Laboratory of Structure Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116024, China;2. Ningbo Research Institute of Dalian University of Technology, Ningbo 315000, China
Abstract:
In view of the difficulties that the dynamic interface force of satellite rocket connection cannot be directly measured by force sensors, and the typical time domain dynamic load inversion method is difficult to accurately calculate the time domain variation of the interface force, a deep learning inversion method of satellite rocket interface force based on long short term memory (LSTM) neural network is proposed. Firstly, based on the satellite ground test, the acceleration measurement data of the main structure of the satellite is used as the input layer, and the satellite rocket interface force measurement data is used as the output layer, and the LSTM neural network is used to establish the inverse mapping relationship model between the input and output, so as to realize the satellite interface force inversion with high accuracy during the launch process. Furthermore, sine sweep and random vibration experiments of a typical satellite structure are designed and carried out to test the feasibility of the LSTM interface force inversion method. The results show that the inversion method based on LSTM deep learning can accurately obtain the time series data of dynamic interface force, and the two performance indexes are better than the current typical load inversion methods.
Keywords:Satellite rocket connection structure   Dynamic interface force   Inversion   Deep learning   LSTM neural network  
点击此处可从《宇航学报》浏览原始摘要信息
点击此处可从《宇航学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号