首页 | 本学科首页   官方微博 | 高级检索  
     

基于径向基函数的变量预测模型模式识别方法
作者姓名:潘海洋  杨宇  郑近德  程军圣
作者单位:1.湖南大学 汽车车身先进设计制造国家重点实验室,长沙 410082
基金项目:国家重点研发计划(2016YFF0203400); 国家自然科学基金(51575168,51375152);智能型新能源汽车国家2011协同创新中心资助项目; 湖南省绿色汽车2011协同创新中心资助项目
摘    要:针对变量预测模型模式识别方法中4种数学模型不足以反映特征值之间复杂关系的缺陷.因此,提出了一种基于径向基函数的变量预测模型(VPMRBF)模式识别方法,把提取的特征值输入到VPMRBF分类器中,然后通过训练样本建立反映特征值之间复杂关系的径向基函数预测模型,最后把测试样本的特征值作为径向基函数预测模型的输入,以预测误差平方和为依据完成分类.该方法充分有效地利用并且结合径向基函数和变量预测模式识别方法的优点,实现了故障特征提取到故障识别的全程诊断. 滚动轴承故障诊断实验分析结果表明:与径向基神经网络、支持向量机和变量预测模式识别方法相比,VPMRBF的识别率分别提高了4.75%,1.75%和5.25%. 

关 键 词:径向基函数(RBF)   变量预测模式识别方法   预测误差平方和   滚动轴承   故障诊断
收稿时间:2015-05-19
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《航空动力学报》浏览原始摘要信息
点击此处可从《航空动力学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号