首页 | 本学科首页   官方微博 | 高级检索  
     

基于神经网络的自适应非线性控制及仿真研究
引用本文:魏东,马瑞平,张明廉,石晓荣. 基于神经网络的自适应非线性控制及仿真研究[J]. 北京航空航天大学学报, 2004, 30(3): 217-221
作者姓名:魏东  马瑞平  张明廉  石晓荣
作者单位:北京航空航天大学 自动化科学与电气工程学院, 北京 100083
摘    要:
研究了神经网络非线性动态系统的自适应控制方法,首先利用改进的非线性自回归滑动平均模型,采用多层前向神经网络辨识非线性系统模型,然后直接由辨识结果设计出控制器,并根据控制误差对控制律作在线修正.利用导弹模型进行了控制仿真,仿真结果表明采用此方法可以得到较好的控制效果,而且在模型不确定和有噪声干扰的情况下仍能正常跟踪给定的迎角信号,具有较好的鲁棒性. 

关 键 词:神经网络   非线性   系统辨识   自适应控制
文章编号:1001-5965(2004)03-0217-05
收稿时间:2002-11-04
修稿时间:2002-11-04

Artificial-neural-network-based nonlinear adaptive control and simulation
Wei Dong,Ma Ruiping,Zhang Minglian,Shi Xiaorong. Artificial-neural-network-based nonlinear adaptive control and simulation[J]. Journal of Beijing University of Aeronautics and Astronautics, 2004, 30(3): 217-221
Authors:Wei Dong  Ma Ruiping  Zhang Minglian  Shi Xiaorong
Affiliation:School of Automation Science and Electrical Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100083, China
Abstract:
The increasing complexity of the nonlinear systems highlights the need for advanced modeling and control techniques for effective control. An artificial-neural-network-based nonlinear adaptive control system was studied, which identified the dynamics of the plant with improved NARMA(nonlinear auto-regressive moving average) model at first. Then, the control algorithm was deduced with respect to the model directly. An adaptive system was designed to control a longitudinal missile autopilot which achieves tracking of external reference commands in angle of attack.Simulation results illustrate the ability of this technique to compensate for unmodeled dynamics and uncertain plant nonlinearities.
Keywords:neural networks  nonlinear  system identification  adaptive control
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《北京航空航天大学学报》浏览原始摘要信息
点击此处可从《北京航空航天大学学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号