首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Inhibitory effect of simulated microgravity on differentiating preosteoblasts
Authors:LF Hu  AR Qian  Y Wang  SM Di  P Shang
Institution:Key Laboratory for Space Bioscience and Biotechnology, Institute of Special Environmental Biophysics, School of Life Sciences, Northwestern Polytechnical University, 127 Youyi Xilu, Xi’an 710072, China
Abstract:The bone loss induced by microgravity is partly due to the decrease of mature osteoblasts. In the present study, we employed the random positioning machine (RPM) to simulate microgravity and investigated the acute effects of simulated microgravity on the differentiation of 2T3 preosteoblasts. Following 7 days’ culture under normal (1 g) condition, cells were exposed to simulated microgravity for 24 h. The results showed that 24 h treatment of simulated microgravity significantly decreased alkaline phosphatase (ALP) activity without changing the cell morphology. In addition, the mRNA expressions of osteogenic genes, including runt-related gene 2 (Runx2), osterix, osteocalcin (OC), type I collagen (Col I) and bone morphogenetic protein (BMP), were dramatically downregulated. Moreover, western blot analysis of total extracellular signal-regulated kinase (Erk) and phosphorylated Erk (p-Erk) indicated that p-Erk level, which represents the Erk activation status, was increased. Taken together, our results suggested that acute exposure to simulated microgravity inhibited osteoblast differentiation through modulating the expression of osteogenic genes and the Erk activity. These findings provide new insight for bone loss due to microgravity and unloading.
Keywords:Bone loss  Simulated microgravity  Random positioning machine  Osteoblast differentiation
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号