首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Numerical modeling of propagation of breaking nonlinear acoustic-gravity waves from the lower to the upper atmosphere
Authors:Nikolai M Gavrilov  Sergey P Kshevetskii
Institution:1. Atmospheric Physics Department, Saint-Petersburg State University, Saint-Petersburg, Russia;2. Theoretical Physics Department, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
Abstract:Acoustic-gravity waves (AGWs) observed in the upper atmosphere may be generated near the Earth’s surface due to a variety of meteorological sources. Two-dimensional simulations of vertical propagation and breaking of nonlinear AGWs in the atmosphere are performed. Forcing near the Earth’s surface is used as the AGW source in the model. We use a numerical method based on finite-difference analogues of fundamental conservation laws for solving atmospheric hydrodynamic equations. This approach selects physically correct generalized solutions of the wave hydrodynamic equations. Numerical simulations are performed in a representative region of the Earth’s atmosphere up to altitude 500 km. Vertical profiles of temperature, density, molecular viscosity and heat conductivity were taken from the standard atmosphere model MSIS-90 for January. Calculations were made for different amplitudes and frequencies of lower boundary wave forcing. It is shown that after activating the tropospheric wave forcing, the initial pulse of AGWs may very quickly propagate to altitudes of 100 km and above and relatively slowly dissipate due to molecular viscosity and heat conduction. This may increase the role of transient nonstationary waves in effective energy transport and variations of atmospheric parameters and gas admixtures in a broad altitude range.
Keywords:Atmosphere  Acoustic-gravity waves  Nonlinear interactions  Numerical modeling  Breaking  Turbulence
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号