首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Improved interpretation of solar wind ion measurements via high-resolution magnetic field data
Authors:BA Maruca  JC Kasper
Institution:1. Space Sciences Laboratory, University of California, Berkeley, 7 Gauss Way, Berkeley, CA 94720, United States;2. Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138, United States
Abstract:The Wind   spacecraft’s Faraday cups (FC) continue to produce high-quality, in situ observations of thermal protons (i.e., ionized hydrogen) and αα-particles (i.e., fully ionized helium) in the solar wind. By fitting a Wind/FC ion spectrum with a model velocity distribution function (VDF) for each particle species, values for density, bulk velocity, and temperature can be inferred. Incorporating measurements of the background magnetic field from the Wind Magnetic Field Investigation (MFI) allows perpendicular and parallel temperature components to be separated. Prior implementations of this analysis averaged the higher-cadence Wind/MFI measurements to match that of the Wind/FC ion spectra. However, this article summarizes recent and extensive revisions to the analysis software that, among other things, eliminate such averaging and thereby account for variations in the direction of the magnetic field over the time taken to measure the ions. A statistical comparison reveals that the old version consistently underestimates the temperature anisotropy of ion VDF’s: averaging over fluctuations in the magnetic field essentially blurs the perpendicular and parallel temperature components, which makes the plasma seem artificially more isotropic. The new version not only provides a more accurate dataset of ion parameters (which is well suited to the study of microkinetic phenomena), it also demonstrates a novel technique for jointly processing particle and field data. Such methods are crucial to heliophysics as wave-particle interactions are increasingly seen as playing an important role in the dynamics of the solar wind and similar space plasmas.
Keywords:Solar wind  Ion temperature anisotropy  Wave-particle interactions  Data analysis  Instrumentation
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号