首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Effect of blank quenching on shear spinning forming precision of 2219 aluminum alloy complex thin-walled components
Institution:1. School of Science, Civil Aviation Flight University of China, Guanghan 618307, China;2. State Key Laboratory of Solidification Processing, Shaanxi Key Laboratory of High-Performance Precision Forming Technology and Equipment, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072, China
Abstract:The quenching-spinning (Q-S) process, i.e., shear spinning after blank quenching, has been increasingly utilized to form 2219 aluminum alloy complex thin-walled components. However, the changes in material property, shape and stress of the blanks after quenching will affect the spinning forming precision. In this study, the rules and mechanisms of these effects are investigated based on a combined finite element (FE) model including blank quenching and component spinning process. The results indicate that the increase of material strength and the existence of distortion of the quenched blank lead to a notable increase in the non-uniformity of the circumferential compressive stress in the spinning area and the increase of the flange swing height during spinning. These changes result in an increase in the wall thickness and component-mandrel gap of the components. The quenching residual stress has little effect on wall thickness and roundness but can noticeably reduce the component-mandrel gap. This is because that the existence of quenching residual stress of the blank can lead to the decrease of the maximum circumferential compressive stress of the workpiece in spinning and an obvious drop in the maximum compressive stress after reaching the stress peak. Quenching distortion is the main factor affecting the roundness. Moreover, the optimized installation way of the blank for spinning is obtained.
Keywords:2219 aluminum alloy  Complex thin-walled components  Finite element analysis  Quenching distortion  Residual stress  Shear spinning
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号