首页 | 本学科首页   官方微博 | 高级检索  
     检索      

几何不确定性区间分析及鲁棒气动优化设计
引用本文:宋鑫,郑冠男,杨国伟,姜倩.几何不确定性区间分析及鲁棒气动优化设计[J].北京航空航天大学学报,2019,45(11):2217-2227.
作者姓名:宋鑫  郑冠男  杨国伟  姜倩
作者单位:中国科学院力学研究所流固耦合系统力学重点实验室,北京100080;中国科学院大学工程科学学院,北京100049;中国科学院力学研究所流固耦合系统力学重点实验室,北京100080;中国科学院大学工程科学学院,北京100049;中国科学院力学研究所流固耦合系统力学重点实验室,北京100080;中国科学院大学工程科学学院,北京100049;中国科学院力学研究所流固耦合系统力学重点实验室,北京100080;中国科学院大学工程科学学院,北京100049
基金项目:国家自然科学基金11672303
摘    要:不确定性因素会导致飞行器偏离预先设计的气动性能,造成气动性能下降甚至产生严重的后果。针对工程中无法给出准确的几何不确定性概率分布以及跨声速条件下非线性气动问题,对几何不确定性的非概率参数化建模进行了研究,并结合Kriging模型及最优化方法建立了快速非线性区间分析方法。采用该方法对对称翼型进行不确定性分析,获得了气动性能参数的定量变化区间。在区间不确定性分析基础上建立了鲁棒优化设计流程。基于区间序关系及区间可能度转换模型将单目标区间不确定性优化问题转化为多目标确定性优化问题,并采用基于Pareto熵的自适应多目标粒子群算法对优化问题进行寻优。考虑几何不确定性以及升力、力矩、面积约束,以阻力性能为目标对超临界翼型进行了鲁棒优化设计。与确定性优化设计结果对比表明,确定性优化设计在不确定性因素的影响下易失效,而鲁棒设计可得到更安全可靠的结果。 

关 键 词:几何不确定性  非线性区间分析  直接操作自由变形(DFFD)  气动优化设计  鲁棒优化设计  自适应多目标粒子群算法  Kriging模型
收稿时间:2019-03-04

Interval analysis for geometric uncertainty and robust aerodynamic optimization design
Institution:1.Key Laboratory for Mechanics in Fluid Solid Coupling Systems, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100080, China2.School of Engineering Science, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract:Uncertainties will make aircraft deviate from the designed aerodynamic performance, resulting in the decrease in aerodynamic performance and even destruction. Due to the problem that the probability distribution of geometric uncertainty cannot be given in engineering and nonlinear aerodynamic problem in transonic flows, the non-probabilistic parametric modeling of geometric uncertainty is studied, and the fast nonlinear interval analysis method is established in combination with Kriging model and optimization method. The effects of geometric uncertainties on a symmetric airfoil are analyzed using the above method, and the quantitative variation range of aerodynamic performance is obtained. Based on interval uncertainty analysis, a robust optimization design process is established. The single-objective interval uncertainty optimization problem was transformed into deterministic multi-objective optimization problem based on the order relation and possibility degree model of interval number, and the optimization problem was solved by adaptive multi-objective particle swarm optimization which is based on Pareto entropy. The robust optimization design is implemented for the supercritical airfoil with the drag objective as well as lift, moment and area constraints under geometric uncertainties. The results compared with deterministic optimization design show that deterministic design is prone to failure under the influence of uncertainties, while the robust design is more secure and reliable. 
Keywords:
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《北京航空航天大学学报》浏览原始摘要信息
点击此处可从《北京航空航天大学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号