首页 | 本学科首页   官方微博 | 高级检索  
     

基于BP神经网络的复合材料性能预测
引用本文:尹海莲,胡自力. 基于BP神经网络的复合材料性能预测[J]. 南京航空航天大学学报, 2006, 38(2): 234-238
作者姓名:尹海莲  胡自力
作者单位:南京航空航天大学无人机研究院,南京,210016;南京航空航天大学无人机研究院,南京,210016
摘    要:针对复合材料性能表征十分复杂、困难的情况,利用人工神经网络的BP算法,建立了复合材料性能预测模型。模型由3层神经元组成,分别为输入层、隐含层和输出层。以碳/陶瓷复合材料性能与成分的关系为研究对象,选取了38组实验数据作为学习样本,模型总误差为0.18,用建立的网络预测未知,并给出预报曲线。和试验值相比较表明,所建立的网络能反映碳/陶瓷复合材料组分与其材料性能之间的关系,为实验设计提供了新的思路,节省了时间和劳力。

关 键 词:BP神经网络  学习样本  材料性能  复合材料
文章编号:1005-2615(2006)02-0234-05
收稿时间:2005-09-13
修稿时间:2005-12-09

Prediction of Composite Material Properties Based on BP Algorithm of Artificial Neutral Network
Yin Hailian,Hu Zili. Prediction of Composite Material Properties Based on BP Algorithm of Artificial Neutral Network[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2006, 38(2): 234-238
Authors:Yin Hailian  Hu Zili
Abstract:A model is established to predict the relation between components and properties for the composite material based on the back propagation(BP) algorithm of the artificial neural network(ANN).The model is composed of three neuron layers: input layer,hidden layer and output layer to simulate the real structure of the human brain.The relation of properties and components for carbon-ceramics composite is studied.38 samples are used as study data and total error of the model is 0.18.Then the unknown data can be predicted by the model and the predicting curves are drawn.Compared with the experiment,the model can reflect the relation between components and properties for carbon-ceramics composite.It provides a new route for test-design,thus saving the time and labor.
Keywords:BP neutral network  learning sample  material properties  composite material
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号