摘 要: | 旋翼作为直升机的升力面和操作面,其健康状态对直升机的安全至关重要。旋翼故障诊断技术仍是直升机健康与使用监测系统(Health and usage monitoring system, HUMS)领域的薄弱环节,开发旋翼故障诊断技术具有重要价值。基于信息融合技术,首先分析了旋翼故障的诊断机理,建立了旋翼故障模型,通过流固耦合仿真获取了不同故障下桨叶、轮毂和机身的故障特征信息,生成数据集进行网络训练和验证。然后,利用遗传算法反向传播(Genetic algorithm-backpropagation, GA-BP)优化神经网络诊断3种类型的直升机旋翼故障,即后缘调整片误调、变距拉杆误调和桨叶质量不平衡。3个逐级神经网络分别对旋翼故障类型、故障位置和故障程度进行了诊断识别。最后采用加权的Dempster-Shafer(D-S)证据理论对旋翼故障进行诊断和分析。结果证明基于改进D-S证据理论的旋翼故障诊断方法能够成功应用到旋翼故障诊断中,并具有良好的识别效果。
|