首页 | 本学科首页   官方微博 | 高级检索  
     

基于Gabor滤波器的图像目标识别方法
作者姓名:曾姝彦  张广军  李秀智
作者单位:北京航空航天大学 仪器科学与光电工程学院, 北京 100083
摘    要:为了给机器人视觉导航提供有效信息,提出一种基于图像匹配的目标识别方法.对CCD采集的目标图像,由 Gabor 变换生成的二维Gabor 滤波器有着优良的滤波器性能,不需要对图像进行分割,能适应一定的旋转、尺度、光照的变化,通过多个频率和角度的Gabor算子与图像的卷积,获取图像全局信息的特征描述.分类方法采用统计学习理论基础上发展起来的一种新的机器学习方法——支持向量机(SVM, Support Vector Machines),它可解决模型选择、过学习、维数灾难等问题.通过支持向量机进行多维特征向量的分类.该方法可达到较高的识别率,达到实时处理的要求,可以在人脸识别、机器人视觉定位等领域得到应用. 

关 键 词:目标识别   多通道Gabor滤波器   支持向量机   视觉定位
文章编号:1001-5965(2006)08-0954-04
收稿时间:2005-10-10
修稿时间:2005-10-10
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《北京航空航天大学学报》浏览原始摘要信息
点击此处可从《北京航空航天大学学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号