摘 要: | 针对传统逆合成孔径雷达稀疏成像算法存在参数敏感、收敛速度慢等问题,文章以卷积神经网络的自适应参数学习机制为基础,结合模型驱动网络的物理可解释性,提出了一种 ISAR稀疏成像架构——深度增强迭代收缩阈值(Deep Augmented-Iterative Shrinkage Thresholding,DA-IST)网络。首先,DA-IST网络将迭代收缩阈值算法的迭代步骤映射至隐藏层中,不仅能够提高可解释性,而且能够在训练过程中学习最优参数;其次,网络在建模过程中考虑了被忽略的高频分量,提高了重构性能;同时,为了提高网络的鲁棒性,用非线性卷积层替代了线性稀疏变换。实验表明,与传统的模型驱动算法相比,DA-IST网络避免了人工调整参数过程,收敛速度更快,成像质量更高,对特征差异较大的数据具有更好的泛化能力。
|