摘 要: | 高温动态应变计作为航空发动机部件应力、应变检测的重要工具,一旦发生疲劳破坏会直接影响其测试结果的可靠性.针对目前应变计测试耗时长、使用寿命离散程度高等问题,对高温动态应变计敏感栅结构参数进行基于多类型核函数的核主成分分析(KPCA).采用最佳的核函数对应变计疲劳寿命影响因素进行降维,得出栅丝直径、弯数、涂层厚度为主要影响因素;为解决降维后应变计疲劳寿命预测精度差、收敛速度慢等问题,运用遗传算法(GA)优化反向传递(BP)神经网络,即通过遗传算法对神经网络中权值和阈值进行参数寻优,应用于高温动态应变计疲劳寿命的预测,并与几种传统的预测方法进行了比较.结果表明:GA优化后的BP神经网络预测的绝对误差(MAE)、均方误差(MSE)、平均绝对百分比误差(MAPE)均有所减小,对于高温应变计疲劳寿命的预测效果更可靠.
|